Blog
About

1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Tandem Synthesis of High Yield MoS2 Nanosheets and Enzyme Peroxidase Mimicking Properties

        , ,

      Catalysts

      MDPI AG

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Molybdenum Sulfide nanosheets (MoS2 NSs) have unique properties that allow its use in a wide range of applications. Unfortunately, a lack of green synthesis methods to achieve a high yield remains a challenge after decades. Herein we report a simple, ecofriendly, green and cost-effective approach to synthesize water soluble MoS2 NSs via probe/Tip sonication method. The sequential batch manner pathway allows us to attain a high yield of MoS2 NSs (~100%). The prepared MoS2 NSs were characterized using up-to-date surface science techniques. UV-visible-NIR spectroscopy allowed us to visualize the doublet peaks of pristine MoS2 at 610 and 680 nm concomitant with the inter-band transitions at 394 nm and 460 nm. Using Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS), the crystallites’ sizes were estimated. X-ray diffraction (XRD) and Raman Spectroscopy were performed with respect to the bulk MoS2. The energy difference between the Raman peaks revealed that our NSs are formed of 5–6 layers. Further, we explored enzyme peroxidase mimetic properties of the synthesized MoS2 NSs. Results showed that the present MoS2 NSs offer excellent peroxidase mimicking properties. Most importantly, we observed that the optical properties and characteristics of MoS2 NSs synthesized by the current green method are similar to those of MoS2 NSs synthesized using conventional harsh methods reported in the literature. So that we strongly assume that the present method is a green alternative for the existing low yield and harsh experimental procedures to achieve water soluble MoS2 NSs in high yield. The synthesized soluble NSs are promising catalysts for the detection of toxic chemicals in the environment and/or for following enzymatic chromogenic reactions.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging photoluminescence in monolayer MoS2.

          Novel physical phenomena can emerge in low-dimensional nanomaterials. Bulk MoS(2), a prototypical metal dichalcogenide, is an indirect bandgap semiconductor with negligible photoluminescence. When the MoS(2) crystal is thinned to monolayer, however, a strong photoluminescence emerges, indicating an indirect to direct bandgap transition in this d-electron system. This observation shows that quantum confinement in layered d-electron materials like MoS(2) provides new opportunities for engineering the electronic structure of matter at the nanoscale.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            MoS2 and WS2 analogues of graphene.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anomalous lattice vibrations of single- and few-layer MoS2.

              Molybdenum disulfide (MoS(2)) of single- and few-layer thickness was exfoliated on SiO(2)/Si substrate and characterized by Raman spectroscopy. The number of S-Mo-S layers of the samples was independently determined by contact-mode atomic force microscopy. Two Raman modes, E(1)(2g) and A(1g), exhibited sensitive thickness dependence, with the frequency of the former decreasing and that of the latter increasing with thickness. The results provide a convenient and reliable means for determining layer thickness with atomic-level precision. The opposite direction of the frequency shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to Coulombic interactions and possible stacking-induced changes of the intralayer bonding. This work exemplifies the evolution of structural parameters in layered materials in changing from the three-dimensional to the two-dimensional regime.
                Bookmark

                Author and article information

                Contributors
                Journal
                CATACJ
                Catalysts
                Catalysts
                MDPI AG
                2073-4344
                September 2020
                September 03 2020
                : 10
                : 9
                : 1009
                Article
                10.3390/catal10091009
                © 2020
                Product

                Comments

                Comment on this article