45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Some Basic Aspects of HLA-G Biology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human leukocyte antigen-G (HLA-G) is a low polymorphic nonclassical HLA-I molecule restrictively expressed and with suppressive functions. HLA-G gene products are quite complex, with seven HLA-G isoforms, four membrane bound, and other three soluble isoforms that can suffer different posttranslational modifications or even complex formations. In addition, HLA-G has been described included in exosomes. In this review we will focus on HLA-G biochemistry with special emphasis to the mechanisms that regulate its expression and how the protein modifications affect the quantification in biological fluids.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Malignant effusions and immunogenic tumour-derived exosomes.

          Exosomes derived from tumours are small vesicles released in vitro by tumour cell lines in culture supernatants. To assess the role of these exosomes in vivo, we examined malignant effusions for their presence. We also investigated whether these exosomes could induce production of tumour-specific T cells when pulsed with dendritic cells. We isolated exosomes by ultracentrifugation on sucrose and D(2)O gradients of 11 malignant effusions. We characterised exosomes with Western blot analyses, immunoelectron microscopy, and in-vitro stimulations of autologous T lymphocytes. Malignant effusions accumulate high numbers of membrane vesicles that have a mean diameter of 80 nm (SD 30). These vesicles have antigen-presenting molecules (MHC class-I heat-shock proteins), tetraspanins (CD81), and tumour antigens (Her2/Neu, Mart1, TRP, gp100). These criteria, including their morphological characteristics, indicate the similarities between these vesicles and exosomes. Exosomes from patients with melanoma deliver Mart1 tumour antigens to dendritic cells derived from monocytes (MD-DCs) for cross presentation to clones of cytotoxic T lymphocytes specific to Mart1. In seven of nine patients with cancer, lymphocytes specific to the tumour could be efficiently expanded from peripheral blood cells by pulsing autologous MD-DCs with autologous ascitis exosomes. In one patient tested, we successfully expanded a restricted T-cell repertoire, which could not be recovered carcinomatosis nodules. Exosomes derived from tumours accumulate in ascites from patients with cancer. Ascitis exosomes are a natural and new source of tumour-rejection antigens, opening up new avenues for immunisation against cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway.

            Type 1 T regulatory (Tr1) cells suppress immune responses in vivo and in vitro and play a key role in maintaining tolerance to self- and non-self-antigens. Interleukin-10 (IL-10) is the crucial driving factor for Tr1 cell differentiation, but the molecular mechanisms underlying this induction remain unknown. We identified and characterized a subset of IL-10-producing human dendritic cells (DCs), termed DC-10, which are present in vivo and can be induced in vitro in the presence of IL-10. DC-10 are CD14(+), CD16(+), CD11c(+), CD11b(+), HLA-DR(+), CD83(+), CD1a(-), CD1c(-), express the Ig-like transcripts (ILTs) ILT2, ILT3, ILT4, and HLA-G antigen, display high levels of CD40 and CD86, and up-regulate CD80 after differentiation in vitro. DC-10 isolated from peripheral blood or generated in vitro are potent inducers of antigen-specific IL-10-producing Tr1 cells. Induction of Tr1 cells by DC-10 is IL-10-dependent and requires the ILT4/HLA-G signaling pathway. Our data indicate that DC-10 represents a novel subset of tolerogenic DCs, which secrete high levels of IL-10, express ILT4 and HLA-G, and have the specific function to induce Tr1 cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Human Histocompatibility Leukocyte Antigen (HLA)-G–specific Receptor Expressed on All Natural Killer Cells

              Human natural killer (NK) cells express several killer cell immunoglobulin (Ig)-like receptors (KIRs) that inhibit their cytotoxicity upon recognition of human histocompatibility leukocyte antigen (HLA) class I molecules on target cells. Additional members of the KIR family, including some that deliver activation signals, have unknown ligand specificity and function. One such KIR, denoted KIR2DL4, is structurally divergent from other KIRs in the configuration of its two extracellular Ig domains and of its transmembrane and cytoplasmic domains. Here we show that recombinant soluble KIR2DL4 binds to cells expressing HLA-G but not to cells expressing other HLA class I molecules. Unlike other HLA class I–specific KIRs, which are clonally distributed on NK cells, KIR2DL4 is expressed at the surface of all NK cells. Furthermore, functional transfer of KIR2DL4 into the cell line NK-92 resulted in inhibition of lysis of target cells that express HLA-G, but not target cells that express other class I molecules including HLA-E. Therefore, given that HLA-G expression is restricted to fetal trophoblast cells, KIR2DL4 may provide important signals to maternal NK decidual cells that interact with trophoblast cells at the maternal–fetal interface during pregnancy.
                Bookmark

                Author and article information

                Journal
                J Immunol Res
                J Immunol Res
                JIR
                Journal of Immunology Research
                Hindawi Publishing Corporation
                2314-8861
                2314-7156
                2014
                9 April 2014
                : 2014
                : 657625
                Affiliations
                1Department of Biochemistry, University Clinic of Navarra, Pamplona, Spain
                2Department of Medical Sciences, Section of Microbiology and Medical Genetics, University of Ferrara, Ferrara, Italy
                3Neuroradiology Unit, Sant'Anna Hospital, Ferrara, Italy
                Author notes
                *Alvaro González: agonzaleh@ 123456unav.es

                Academic Editor: Fabio Morandi

                Author information
                http://orcid.org/0000-0002-9053-3606
                http://orcid.org/0000-0001-9507-9126
                http://orcid.org/0000-0003-4496-9561
                http://orcid.org/0000-0003-0477-724X
                Article
                10.1155/2014/657625
                4000973
                24818168
                c847c208-b09b-4578-bb32-e49f9469cc6d
                Copyright © 2014 Estibaliz Alegre et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 December 2013
                : 3 March 2014
                Funding
                Funded by: Fondo de Investigación Sanitaria
                Award ID: PI11/02119
                Categories
                Review Article

                Comments

                Comment on this article