29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arrhythmogenic KCNE gene variants: current knowledge and future challenges

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking, and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents

          An envelope of tails test was used to show that the delayed rectifier K+ current (IK) of guinea pig ventricular myocytes results from the activation of two outward K+ currents. One current was specifically blocked by the benzenesulfonamide antiarrhythmic agent, E-4031 (IC50 = 397 nM). The drug-sensitive current, "IKr" exhibits prominent rectification and activates very rapidly relative to the slowly activating drug-insensitive current, "IKs." IKs was characterized by a delayed onset of activation that occurs over a voltage range typical of the classically described cardiac IK. Fully activated IKs, measured as tail current after 7.5-s test pulses, was 11.4 times larger than the fully activated IKr. IKr was also blocked by d-sotalol (100 microM), a less potent benzenesulfonamide Class III antiarrhythmic agent. The activation curve of IKr had a steep slope (+7.5 mV) and a negative half- point (-21.5 mV) relative to the activation curve of IKs (slope = +12.7 mV, half-point = +15.7 mV). The reversal potential (Erev) of IKr (-93 mV) was similar to EK (-94 mV for [K+]o = 4 mM), whereas Erev of IKs was -77 mV. The time constants for activation and deactivation of IKr made up a bell-shaped function of membrane potential, peaking between - 30 and -40 mV (170 ms). The slope conductance of the linear portion of the fully activated IKr-V relation was 22.5 S/F. Inward rectification of this relation occurred at potentials greater than -50 mV, resulting in a voltage-dependent decrease in peak IKr at test potentials greater than 0 mV. Peak IKr at 0 mV averaged 0.8 pA/pF (n = 21). Although the magnitude of IKr was small relative to fully activated IKs, the two currents were of similar magnitude when measured during a relatively short pulse protocol (225 ms) at membrane potentials (-20 to +20 mV) typical of the plateau phase of cardiac action potentials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia.

            A novel potassium channel gene has been cloned, characterized, and associated with cardiac arrhythmia. The gene encodes MinK-related peptide 1 (MiRP1), a small integral membrane subunit that assembles with HERG, a pore-forming protein, to alter its function. Unlike channels formed only with HERG, mixed complexes resemble native cardiac IKr channels in their gating, unitary conductance, regulation by potassium, and distinctive biphasic inhibition by the class III antiarrhythmic E-4031. Three missense mutations associated with long QT syndrome and ventricular fibrillation are identified in the gene for MiRP1. Mutants form channels that open slowly and close rapidly, thereby diminishing potassium currents. One variant, associated with clarithromycin-induced arrhythmia, increases channel blockade by the antibiotic. A mechanism for acquired arrhythmia is revealed: genetically based reduction in potassium currents that remains clinically silent until combined with additional stressors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in the hminK gene cause long QT syndrome and suppress IKs function.

              Ion-channel beta-subunits are ancillary proteins that co-assemble with alpha-subunits to modulate the gating kinetics and enhance stability of multimeric channel complexes. Despite their functional importance, dysfunction of potassium-channel beta-subunits has not been associated with disease. Recent physiological studies suggest that KCNE1 encodes beta-subunits (hminK) that co-assemble with KvLQT1 alpha-subunits to form the slowly activating delayed rectifier K+ (IKs) channel. Because KVLQT1 mutations cause arrhythmia susceptibility in the long QT syndrome (LQT), we hypothesized that mutations in KCNE1 also cause this disorder. Here, we define KCNE1 missense mutations in affected members of two LQT families. Both mutations (S74L, D76N) reduced IKs by shifting the voltage dependence of activation and accelerating channel deactivation. D76N hminK also had a strong dominant-negative effect. The functional consequences of these mutations would be delayed cardiac repolarization and an increased risk of arrhythmia. This is the first description of KCNE1 as an LQT gene and confirms that hminK is an integral protein of the IKs channel.
                Bookmark

                Author and article information

                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                24 January 2014
                2014
                : 5
                : 3
                Affiliations
                Bioelectricity Laboratory, Department of Pharmacology, Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA, USA
                Author notes

                Edited by: Junjie Xiao, Shanghai University, China

                Reviewed by: Junjie Xiao, Shanghai University, China; Lei Zhang, Massachusetts General Hospital, USA

                *Correspondence: Geoffrey W. Abbott, Bioelectricity Laboratory, Department of Pharmacology, Department of Physiology and Biophysics, School of Medicine, University of California, 360 Medical Surge II, Irvine, CA 92697, USA e-mail: abbottg@ 123456uci.edu

                This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Genetics.

                Article
                10.3389/fgene.2014.00003
                3900874
                c8481ef5-9085-45ff-b1c5-d5aa3f46fbd0
                Copyright © 2014 Crump and Abbott.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 November 2013
                : 04 January 2014
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 88, Pages: 7, Words: 6696
                Categories
                Genetics
                Review Article

                Genetics
                mink-related peptide,atrial fibrillation,long qt syndrome,brugada syndrome,mirp
                Genetics
                mink-related peptide, atrial fibrillation, long qt syndrome, brugada syndrome, mirp

                Comments

                Comment on this article