Blog
About

48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NBR1-Mediated Selective Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress Responses

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant autophagy plays an important role in delaying senescence, nutrient recycling, and stress responses. Functional analysis of plant autophagy has almost exclusively focused on the proteins required for the core process of autophagosome assembly, but little is known about the proteins involved in other important processes of autophagy, including autophagy cargo recognition and sequestration. In this study, we report functional genetic analysis of Arabidopsis NBR1, a homolog of mammalian autophagy cargo adaptors P62 and NBR1. We isolated two nbr1 knockout mutants and discovered that they displayed some but not all of the phenotypes of autophagy-deficient atg5 and atg7 mutants. Like ATG5 and ATG7, NBR1 is important for plant tolerance to heat, oxidative, salt, and drought stresses. The role of NBR1 in plant tolerance to these abiotic stresses is dependent on its interaction with ATG8. Unlike ATG5 and ATG7, however, NBR1 is dispensable in age- and darkness-induced senescence and in resistance to a necrotrophic pathogen. A selective role of NBR1 in plant responses to specific abiotic stresses suggest that plant autophagy in diverse biological processes operates through multiple cargo recognition and delivery systems. The compromised heat tolerance of atg5, atg7, and nbr1 mutants was associated with increased accumulation of insoluble, detergent-resistant proteins that were highly ubiquitinated under heat stress. NBR1, which contains an ubiquitin-binding domain, also accumulated to high levels with an increasing enrichment in the insoluble protein fraction in the autophagy-deficient mutants under heat stress. These results suggest that NBR1-mediated autophagy targets ubiquitinated protein aggregates most likely derived from denatured or otherwise damaged nonnative proteins generated under stress conditions.

          Author Summary

          Autophagy is an evolutionarily conserved process that sequestrates and delivers cytoplasmic macromolecules and organelles to the vacuoles or lysosomes for degradation. In plants, autophagy is involved in supplying internal nutrients during starvation and in promoting cell survival during senescence and during biotic and abiotic stresses. Arabidopsis NBR1 is a homolog of mammalian autophagy cargo adaptors P62 and NBR1. Disruption of Arabidopsis NBR1 caused increased sensitivity to a spectrum of abiotic stresses but had no significant effect on plant senescence, responses to carbon starvation, or resistance to a necrotrophic pathogen. NBR1 contains an ubiquitin-binding domain, and the compromised stress tolerance of autophagy mutants was associated with increased accumulation of NBR1 and ubiquitin-positive cellular protein aggregates in the insoluble protein fraction under stress conditions. Based on these results, we propose that NBR1 targets ubiquitinated protein aggregates most likely derived from denatured and otherwise damaged nonnative proteins for autophagic clearance under stress conditions.

          Related collections

          Most cited references 52

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

           K Livak,  T Schmittgen (2001)
          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.

            The Agrobacterium vacuum infiltration method has made it possible to transform Arabidopsis thaliana without plant tissue culture or regeneration. In the present study, this method was evaluated and a substantially modified transformation method was developed. The labor-intensive vacuum infiltration process was eliminated in favor of simple dipping of developing floral tissues into a solution containing Agrobacterium tumefaciens, 5% sucrose and 500 microliters per litre of surfactant Silwet L-77. Sucrose and surfactant were critical to the success of the floral dip method. Plants inoculated when numerous immature floral buds and few siliques were present produced transformed progeny at the highest rate. Plant tissue culture media, the hormone benzylamino purine and pH adjustment were unnecessary, and Agrobacterium could be applied to plants at a range of cell densities. Repeated application of Agrobacterium improved transformation rates and overall yield of transformants approximately twofold. Covering plants for 1 day to retain humidity after inoculation also raised transformation rates twofold. Multiple ecotypes were transformable by this method. The modified method should facilitate high-throughput transformation of Arabidopsis for efforts such as T-DNA gene tagging, positional cloning, or attempts at targeted gene replacement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.

              It has been suggested that effective defense against biotrophic pathogens is largely due to programmed cell death in the host, and to associated activation of defense responses regulated by the salicylic acid-dependent pathway. In contrast, necrotrophic pathogens benefit from host cell death, so they are not limited by cell death and salicylic acid-dependent defenses, but rather by a different set of defense responses activated by jasmonic acid and ethylene signaling. This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens. While the model above seems generally correct, there are exceptions and additional complexities.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2013
                January 2013
                17 January 2013
                : 9
                : 1
                Affiliations
                [1 ]Department of Horticulture, Zhejiang University, Hangzhou, China
                [2 ]Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
                University of Missouri, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZC JZ JW J-QY. Performed the experiments: JZ JW YC Y-JC BF. Analyzed the data: ZC JZ JW. Wrote the paper: ZC JZ.

                Article
                PGENETICS-D-12-01740
                10.1371/journal.pgen.1003196
                3547818
                23341779

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Counts
                Pages: 19
                Funding
                This work was supported by the Natural Science Foundation of China (grant 2013C150203 to ZC), the National Basic Research Program of China (grant 2009CB119000 to J-QY), and the U.S. National Science Foundation (grant IOS–0958066 to ZC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Biology
                Genetics
                Molecular Cell Biology
                Plant Science

                Genetics

                Comments

                Comment on this article