20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Neurostimulation as an Approach to Dysphagia Rehabilitation: Current Evidence

      ,
      Current Physical Medicine and Rehabilitation Reports
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage.

          This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the development of more effective clinical rehabilitation interventions. Neural plasticity is believed to be the basis for both learning in the intact brain and relearning in the damaged brain that occurs through physical rehabilitation. Neuroscience research has made significant advances in understanding experience-dependent neural plasticity, and these findings are beginning to be integrated with research on the degenerative and regenerative effects of brain damage. The qualities and constraints of experience-dependent neural plasticity are likely to be of major relevance to rehabilitation efforts in humans with brain damage. However, some research topics need much more attention in order to enhance the translation of this area of neuroscience to clinical research and practice. The growing understanding of the nature of brain plasticity raises optimism that this knowledge can be capitalized upon to improve rehabilitation efforts and to optimize functional outcome.
            • Record: found
            • Abstract: found
            • Article: not found

            Plasticity in the human central nervous system.

            Long-term potentiation (LTP) is a well-characterized form of synaptic plasticity that fulfils many of the criteria for a neural correlate of memory. LTP has been studied in a variety of animal models and, in rodents in particular, there is now a strong body of evidence demonstrating common underlying molecular mechanisms in LTP and memory. Results are beginning to emerge from studies of neural plasticity in humans. This review will summarize findings demonstrating that synaptic LTP can be induced in human CNS tissue and that rodent and human LTP probably share similar molecular mechanisms. We will also discuss the application of non-invasive stimulation techniques to awake human subjects to induce LTP-like long-lasting changes in localized neural activity. These techniques have potential therapeutic application in manipulating neural plasticity to treat a variety of conditions, including depression, Parkinson's disease, epilepsy and neuropathic pain.
              • Record: found
              • Abstract: found
              • Article: not found

              Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?

              Motor impairment resulting from chronic stroke can have extensive physical, psychological, financial, and social implications despite available neurorehabilitative treatments. Recent studies in animals showed that direct epidural stimulation of the primary motor cortex surrounding a small infarct in the lesioned hemisphere (M1(lesioned hemisphere)) elicits improvements in motor function. In human beings, proof of principle studies from different laboratories showed that non-invasive transcranial magnetic stimulation and direct current stimulation that upregulate excitability within M1(lesioned hemisphere) or downregulate excitability in the intact hemisphere (M1(intact hemisphere)) results in improvement in motor function in patients with stroke. Possible mechanisms mediating these effects can include the correction of abnormally persistent interhemispheric inhibitory drive from M1(intact hemisphere) to M1(lesioned hemisphere) in the process of generation of voluntary movements by the paretic hand, a disorder correlated with the magnitude of impairment. In this paper we review these mechanistically oriented interventional approaches. WHAT NEXT?: These findings suggest that transcranial magnetic stimulation and transcranial direct current stimulation could develop into useful adjuvant strategies in neurorehabilitation but have to be further assessed in multicentre clinical trials.

                Author and article information

                Journal
                Current Physical Medicine and Rehabilitation Reports
                Curr Phys Med Rehabil Rep
                Springer Nature
                2167-4833
                December 2013
                October 2013
                : 1
                : 4
                : 257-266
                Article
                10.1007/s40141-013-0034-x
                c85a9c26-cfaa-4c4e-84bc-179ba91dcda7
                © 2013
                History

                Comments

                Comment on this article

                Related Documents Log