19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetically Encoded Sender–Receiver System in 3D Mammalian Cell Culture

      rapid-communication

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Engineering spatial patterning in mammalian cells, employing entirely genetically encoded components, requires solving several problems. These include how to code secreted activator or inhibitor molecules and how to send concentration-dependent signals to neighboring cells, to control gene expression. The Madin–Darby Canine Kidney (MDCK) cell line is a potential engineering scaffold as it forms hollow spheres (cysts) in 3D culture and tubulates in response to extracellular hepatocyte growth factor (HGF). We first aimed to graft a synthetic patterning system onto single developing MDCK cysts. We therefore developed a new localized transfection method to engineer distinct sender and receiver regions. A stable reporter line enabled reversible EGFP activation by HGF and modulation by a secreted repressor (a truncated HGF variant, NK4). By expanding the scale to wide fields of cysts, we generated morphogen diffusion gradients, controlling reporter gene expression. Together, these components provide a toolkit for engineering cell–cell communication networks in 3D cell culture.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Foundations for engineering biology.

          Drew Endy (2005)
          Engineered biological systems have been used to manipulate information, construct materials, process chemicals, produce energy, provide food, and help maintain or enhance human health and our environment. Unfortunately, our ability to quickly and reliably engineer biological systems that behave as expected remains quite limited. Foundational technologies that make routine the engineering of biology are needed. Vibrant, open research communities and strategic leadership are necessary to ensure that the development and application of biological technologies remains overwhelmingly constructive.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic biology: applications come of age

            Key Points Early synthetic biology designs, namely the genetic toggle switch and repressilator, showed that regulatory components can be characterized and assembled to bring about complex, electronics-inspired behaviours in living systems (for example, memory storage and timekeeping). Through the characterization and assembly of genetic parts and biological building blocks, many more devices have been constructed, including switches, memory elements, oscillators, pulse generators, digital logic gates, filters and communication modules. Advances in the field are now allowing expansion beyond small gene networks to the realm of larger biological programs, which hold promise for a wide range of applications, including biosensing, therapeutics and the production of biofuels, pharmaceuticals and biomaterials. Synthetic biosensing circuits consist of sensitive elements that bind analytes and transducer modules that mobilize cellular responses. Balancing these two modules involves engineering modularity and specificity into the various circuits. Biosensor sensitive elements include environment-responsive promoters (transcriptional), RNA aptamers (translational) and protein receptors (post-translational). Biosensor transducer modules include engineered gene networks (transcriptional), non-coding regulatory RNAs (translational) and protein signal-transduction circuits (post-translational). The contributions of synthetic biology to therapeutics include: engineered networks and organisms for disease-mechanism elucidation, drug-target identification, drug-discovery platforms, therapeutic treatment, therapeutic delivery, and drug production and access. In the microbial production of biofuels and pharmaceuticals, synthetic biology has supplemented traditional genetic and metabolic engineering efforts by aiding the construction of optimized biosynthetic pathways. Optimizing metabolic flux through biosynthetic pathways is traditionally accomplished by driving the expression of pathway enzymes with strong, inducible promoters. New synthetic approaches include the rapid diversification of various pathway components, the rational and model-guided assembly of pathway components, and hybrid solutions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A synthetic multicellular system for programmed pattern formation.

              Pattern formation is a hallmark of coordinated cell behaviour in both single and multicellular organisms. It typically involves cell-cell communication and intracellular signal processing. Here we show a synthetic multicellular system in which genetically engineered 'receiver' cells are programmed to form ring-like patterns of differentiation based on chemical gradients of an acyl-homoserine lactone (AHL) signal that is synthesized by 'sender' cells. In receiver cells, 'band-detect' gene networks respond to user-defined ranges of AHL concentrations. By fusing different fluorescent proteins as outputs of network variants, an initially undifferentiated 'lawn' of receivers is engineered to form a bullseye pattern around a sender colony. Other patterns, such as ellipses and clovers, are achieved by placing senders in different configurations. Experimental and theoretical analyses reveal which kinetic parameters most significantly affect ring development over time. Construction and study of such synthetic multicellular systems can improve our quantitative understanding of naturally occurring developmental processes and may foster applications in tissue engineering, biomaterial fabrication and biosensing.
                Bookmark

                Author and article information

                Journal
                ACS Synth Biol
                ACS Synth Biol
                sb
                asbcd6
                ACS Synthetic Biology
                American Chemical Society
                2161-5063
                2161-5063
                06 December 2013
                16 May 2014
                : 3
                : 5
                : 264-272
                Affiliations
                []EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG) , Dr. Aiguader 88, 08003 Barcelona, Spain
                []Advanced Light Microscopy Unit, Centre for Genomic Regulation (CRG) , Dr. Aiguader 88, 08003 Barcelona, Spain
                [§ ]Universitat Pompeu Fabra (UPF) , 08003 Barcelona, Spain
                []Pasqual Maragall Foundation & Barcelonabeta Brain Research Centre, C/Dr. Aiguader 88, 08003 Barcelona, Spain
                []Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata , CP:1900 La Plata, Argentina
                [# ]Department of Life Sciences, Imperial College London , London SW7 2AZ, United Kingdom
                Author notes
                Article
                10.1021/sb400053b
                4046804
                24313393
                c85f3dde-bd18-45b0-8760-26924252841d
                Copyright © 2013 American Chemical Society

                Terms of Use

                History
                : 09 May 2013
                Categories
                Letter
                Custom metadata
                sb400053b
                sb-2013-00053b

                Molecular biology
                morphogen,synthetic patterning,mdck,hgf,nk4
                Molecular biology
                morphogen, synthetic patterning, mdck, hgf, nk4

                Comments

                Comment on this article