17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The K-band luminosity functions of super star clusters in luminous infrared galaxies, their slopes, and the effects of blending

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Super star clusters (SSCs) are typically found in interacting galaxies and trace an extreme form of star-formation. We present a K-band study of SSC candidates in a sample of local luminous infrared galaxies (LIRGs) using two adaptive optics instruments (VLT/NACO and Gemini/ALTAIR/NIRI). In addition to facilitating SSC detections in obscured environments, this work introduces SSC studies in hosts with higher star-formation rates (SFRs) than most previous studies. We find that the luminosity functions (LFs) of the clusters are reasonably well-fitted by a single power-law with the values of the index \alpha ranging between 1.5 to 2.4 with an average value of \alpha ~ 1.9. This value appears to be less steep than the average \alpha ~ 2.2 in normal spiral galaxies. Due to the host galaxy distances involved (median \(D_L\) ~ 70 Mpc) blending effects have to be taken into account, and are investigated using Monte Carlo simulations of blending effects for LFs and a photometric SSC analysis of the well-studied Antennae system which is artificially redshifted to distances of our sample. While blending tends to flatten LFs our analyses show that \Delta \alpha is less than ~ 0.1 in our sample. The simulations also show that in the luminosity range, \(M_K < -13\), considered in this work the extracted SSC luminosities are generally dominated by a single dominant star cluster rather than several knots of SF. We present resolution- and distance-dependent SSC surface density confusion limits and show how blending rates and aperture sizes affect the LFs. The smallest possible apertures should be used in crowded regions.

          Related collections

          Author and article information

          Journal
          04 February 2013
          Article
          10.1093/mnras/stt185
          1302.0768
          c86578a7-ef5b-4413-8fc2-cd88d1d7c3a9

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          18 pages, 11 figures, accepted for publication in MNRAS
          astro-ph.CO

          Comments

          Comment on this article