5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Validation of four-dimensional flow cardiovascular magnetic resonance for aortic stenosis assessment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The management of patients with aortic stenosis (AS) crucially depends on accurate diagnosis. The main aim of this study were to validate the four-dimensional flow (4D flow) cardiovascular magnetic resonance (CMR) methods for AS assessment. Eighteen patients with clinically severe AS were recruited. All patients had pre-valve intervention 6MWT, echocardiography and CMR with 4D flow. Of these, ten patients had a surgical valve replacement, and eight patients had successful transcatheter aortic valve implantation (TAVI). TAVI patients had invasive pressure gradient assessments. A repeat assessment was performed at 3–4 months to assess the remodelling response. The peak pressure gradient by 4D flow was comparable to an invasive pressure gradient (54 ± 26 mmHG vs 50 ± 34 mmHg, P = 0.67). However, Doppler yielded significantly higher pressure gradient compared to invasive assessment (61 ± 32 mmHG vs 50 ± 34 mmHg, P = 0.0002). 6MWT was associated with 4D flow CMR derived pressure gradient (r = −0.45, P = 0.01) and EOA (r = 0.54, P < 0.01) but only with Doppler EOA (r = 0.45, P = 0.01). Left ventricular mass regression was better associated with 4D flow derived pressure gradient change (r = 0.64, P = 0.04). 4D flow CMR offers an alternative method for non-invasive assessment of AS. In addition, 4D flow derived valve metrics have a superior association to prognostically relevant 6MWT and LV mass regression than echocardiography.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Article: not found

          Catheter replacement of the needle in percutaneous arteriography; a new technique.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A minimum dataset for a standard adult transthoracic echocardiogram: a guideline protocol from the British Society of Echocardiography

            There have been significant advances in the field of echocardiography with the introduction of a number of new techniques into standard clinical practice. Consequently, a ‘standard’ echocardiographic examination has evolved to become a more detailed and time-consuming examination that requires a high level of expertise. This Guideline produced by the British Society of Echocardiography (BSE) Education Committee aims to provide a minimum dataset that should be obtained in a comprehensive standard echocardiogram. In addition, the layout proposes a recommended sequence in which to acquire the images. If abnormal pathology is detected, additional views and measurements should be obtained with reference to other BSE protocols when appropriate. Adherence to these recommendations will promote an increased quality of echocardiography and facilitate accurate comparison of studies performed either by different operators or at different departments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human factors as a source of error in peak Doppler velocity measurement.

              The study was conducted to assess the error and variability that results from human factors in Doppler peak velocity measurement. The positioning of the Doppler sample volume in the vessel, adjustment of the Doppler gain and angle, and choice of waveform display size were investigated. We hypothesized that even experienced vascular technologists in a laboratory accredited by the Intersocietal Commission for Accreditation of Vascular Laboratories make significant errors and have significant variability in the subjective adjustments made during measurements. Problems of patient variability were avoided by having the four technologists measure peak velocities from an in vitro pulsatile flow model with unstenosed and 61% stenosed tubes. To evaluate inaccurate angle and sample volume positioning, a probe holder was used in some of the experiments to fix the Doppler angle at 60 degrees. The effect of Doppler gain was studied at three settings--low, ideal, and saturated gains--that were standardized from the ideal level chosen by consensus amongst the technologists. Two waveform display sizes were also investigated. Peak velocity measurement was assessed by comparison with true peak velocities. For each variable studied, average peak velocities were calculated from the 10 measurements made by each technologist and used to find the percent error from the true value, and the coefficient of variation was used to measure the variability. Doppler angle, sample volume placement, and the Doppler gain were the most significant sources of error and variability. Inaccurate angle and placement increased the variability in measurements from 1% to 2% (range) to 4% to 6% for the straight tube and from 1% to 2% to 3% to 9% for the 61% stenosis. The peak velocity error was increased from 9% to 13% to 7% to 28% for the stenosis. Both measurement error and variability were strongly dependent on the Doppler gain level. At low gain, the error was approximately 10% less than the true value and at saturated gain, 20% greater. The display size only affected measurements from the stenosed tube, increasing the error from 9% to 13% to 15% to 24%. Major factors affecting Doppler peak velocity measurement error and variability were identified. Inaccurate angle and sample volume placement increased the variability. The presence of a stenosis was found to increase the measurement errors. The error was found to depend on the Doppler gain setting, with greater variability at low and saturated gains and on the display size with a stenosis. Doppler ultrasound peak velocity measurements are widely used for the diagnostic assessment of the severity of arterial stenoses. However, it is known that these measurements are often in error. We have identified subjective human factors introduced by the technologist and assessed their contribution to peak velocity measurement error and variability. It is to be hoped that by understanding this, improvements in the machine design and measurement methods can be made that will result in improved measurement accuracy and reproducibility.
                Bookmark

                Author and article information

                Contributors
                p.garg@sheffield.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                29 June 2020
                29 June 2020
                2020
                : 10
                : 10569
                Affiliations
                [1 ]ISNI 0000 0004 1936 9262, GRID grid.11835.3e, Department of Infection, Immunity & Cardiovascular Disease, , University of Sheffield, ; Sheffield, UK
                [2 ]ISNI 0000 0000 9422 8284, GRID grid.31410.37, Sheffield Teaching Hospitals NHS Foundation Trust, ; Sheffield, UK
                [3 ]ISNI 0000000089452978, GRID grid.10419.3d, Division of Image Processing, , Leiden University Medical Centre, ; Leiden, The Netherlands
                [4 ]ISNI 0000 0004 1936 8403, GRID grid.9909.9, Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, , University of Leeds, ; Leeds, UK
                [5 ]ISNI 0000000121901201, GRID grid.83440.3b, Institute for Cardiovascular Sciences, , University College London, ; London, UK
                [6 ]ISNI 0000 0004 1936 9262, GRID grid.11835.3e, Insigneo institute of in-silico medicine, , University of Sheffield, ; Sheffield, United Kingdom
                Article
                66659
                10.1038/s41598-020-66659-6
                7324609
                32601326
                c8681b39-2628-4cfa-94ea-bc70f1ef4ae0
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 December 2019
                : 18 May 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                aortic diseases,magnetic resonance imaging
                Uncategorized
                aortic diseases, magnetic resonance imaging

                Comments

                Comment on this article