8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of an 8-Week Protein Supplementation Regimen with Hyperimmunized Cow Milk on Exercise-Induced Organ Damage and Inflammation in Male Runners: A Randomized, Placebo Controlled, Cross-Over Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prolonged strenuous exercise may induce inflammation, cause changes in gastrointestinal permeability, and lead to other unfavorable biological changes and diseases. Nutritional approaches have been used to prevent exercise-induced inflammatory responses and gastrointestinal disorders. Hyperimmunized milk, obtained by immunizing cows against specific antigens, promotes the development of immunity against pathogens, promotes anti-inflammatory effects, and protects intestinal function. Immune protein (IMP) is a concentrated product of hyperimmunized milk and is a more promising means of supplementation to protect against acute infections and inflammation. To determine whether IMP has protective properties against exercise-induced gastrointestinal dysfunction and inflammation, we examined biochemical markers, intestinal damage markers, and pro-/anti-inflammatory profiles of young male runners using a randomized, placebo controlled, cross-over design. Urine samples were collected and used for measurements of creatinine, N-acetyl-β- d-glucosaminidase, osmotic pressure, and specific gravity. Titin was measured as a muscle damage marker. Further, urine concentrations of complement 5a, calprotectin, fractalkine, myeloperoxidase, macrophage colony-stimulating factor, monocyte chemotactic protein-1, intestinal fatty acid binding protein (I-FABP), interferon (IFN)-γ, interleukin (IL)-1β, IL-1 receptor antagonist, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, and tumor necrosis factor (TNF)-α were measured by enzyme-linked immunosorbent assays. We demonstrated that urine osmotic pressure, urine specific gravity, I-FABP, IFN-γ, IL-1β, and TNF-α were reduced by 8 weeks of IMP supplementation, indicating that IMP may have potential in preventing strenuous exercise-induced renal dysfunction, increased intestinal permeability, and inflammation. Thus, IMP supplementation may be a feasible nutritional approach for the prevention of unfavorable exercise-induced symptoms.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan

          Epidemiological evidence indicates that regular physical activity and/or frequent structured exercise reduces the incidence of many chronic diseases in older age, including communicable diseases such as viral and bacterial infections, as well as non-communicable diseases such as cancer and chronic inflammatory disorders. Despite the apparent health benefits achieved by leading an active lifestyle, which imply that regular physical activity and frequent exercise enhance immune competency and regulation, the effect of a single bout of exercise on immune function remains a controversial topic. Indeed, to this day, it is perceived by many that a vigorous bout of exercise can temporarily suppress immune function. In the first part of this review, we deconstruct the key pillars which lay the foundation to this theory—referred to as the “open window” hypothesis—and highlight that: (i) limited reliable evidence exists to support the claim that vigorous exercise heightens risk of opportunistic infections; (ii) purported changes to mucosal immunity, namely salivary IgA levels, after exercise do not signpost a period of immune suppression; and (iii) the dramatic reductions to lymphocyte numbers and function 1–2 h after exercise reflects a transient and time-dependent redistribution of immune cells to peripheral tissues, resulting in a heightened state of immune surveillance and immune regulation, as opposed to immune suppression. In the second part of this review, we provide evidence that frequent exercise enhances—rather than suppresses—immune competency, and highlight key findings from human vaccination studies which show heightened responses to bacterial and viral antigens following bouts of exercise. Finally, in the third part of this review, we highlight that regular physical activity and frequent exercise might limit or delay aging of the immune system, providing further evidence that exercise is beneficial for immunological health. In summary, the over-arching aim of this review is to rebalance opinion over the perceived relationships between exercise and immune function. We emphasize that it is a misconception to label any form of acute exercise as immunosuppressive, and, instead, exercise most likely improves immune competency across the lifespan.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects.

            Cytokines are important mediators of various aspects of health and disease, including appetite, glucose and lipid metabolism, insulin sensitivity, skeletal muscle hypertrophy and atrophy. Over the past decade or so, considerable attention has focused on the potential for regular exercise to counteract a range of disease states by modulating cytokine production. Exercise stimulates moderate to large increases in the circulating concentrations of interleukin (IL)-6, IL-8, IL- 10, IL-1 receptor antagonist, granulocyte-colony stimulating factor, and smaller increases in tumor necrosis factor-α, monocyte chemotactic protein-1, IL-1β, brain-derived neurotrophic factor, IL-12p35/p40 and IL-15. Although many of these cytokines are also expressed in skeletal muscle, not all are released from skeletal muscle into the circulation during exercise. Conversely, some cytokines that are present in the circulation are not expressed in skeletal muscle after exercise. The reasons for these discrepant cytokine responses to exercise are unclear. In this review, we address these uncertainties by summarizing the capacity of skeletal muscle cells to produce cytokines, analyzing other potential cellular sources of circulating cytokines during exercise, and discussing the soluble factors and intracellular signaling pathways that regulate cytokine synthesis (e.g., RNA-binding proteins, microRNAs, suppressor of cytokine signaling proteins, soluble receptors).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Exercise-Induced Splanchnic Hypoperfusion Results in Gut Dysfunction in Healthy Men

              Background Splanchnic hypoperfusion is common in various pathophysiological conditions and often considered to lead to gut dysfunction. While it is known that physiological situations such as physical exercise also result in splanchnic hypoperfusion, the consequences of flow redistribution at the expense of abdominal organs remained to be determined. This study focuses on the effects of splanchnic hypoperfusion on the gut, and the relationship between hypoperfusion, intestinal injury and permeability during physical exercise in healthy men. Methods and Findings Healthy men cycled for 60 minutes at 70% of maximum workload capacity. Splanchnic hypoperfusion was assessed using gastric tonometry. Blood, sampled every 10 minutes, was analyzed for enterocyte damage parameters (intestinal fatty acid binding protein (I-FABP) and ileal bile acid binding protein (I-BABP)). Changes in intestinal permeability were assessed using sugar probes. Furthermore, liver and renal parameters were assessed. Splanchnic perfusion rapidly decreased during exercise, reflected by increased gapg-apCO2 from −0.85±0.15 to 0.85±0.42 kPa (p<0.001). Hypoperfusion increased plasma I-FABP (615±118 vs. 309±46 pg/ml, p<0.001) and I-BABP (14.30±2.20 vs. 5.06±1.27 ng/ml, p<0.001), and hypoperfusion correlated significantly with this small intestinal damage (rS = 0.59; p<0.001). Last of all, plasma analysis revealed an increase in small intestinal permeability after exercise (p<0.001), which correlated with intestinal injury (rS = 0.50; p<0.001). Liver parameters, but not renal parameters were elevated. Conclusions Exercise-induced splanchnic hypoperfusion results in quantifiable small intestinal injury. Importantly, the extent of intestinal injury correlates with transiently increased small intestinal permeability, indicating gut barrier dysfunction in healthy individuals. These physiological observations increase our knowledge of splanchnic hypoperfusion sequelae, and may help to understand and prevent these phenomena in patients.
                Bookmark

                Author and article information

                Journal
                Biomedicines
                Biomedicines
                biomedicines
                Biomedicines
                MDPI
                2227-9059
                04 March 2020
                March 2020
                : 8
                : 3
                : 51
                Affiliations
                [1 ]Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; masihui@ 123456toki.waseda.jp
                [2 ]Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; t.tominaga7713@ 123456gmail.com (T.T.); chappy-ld312@ 123456moegi.waseda.jp (C.O.)
                [3 ]Research Institute for Life Support Innovation, Waseda University, Shinjuku 162-0041, Japan; rurishijimikanda@ 123456gmail.com (K.K.); k.sugama@ 123456kurenai.waseda.jp (K.S.)
                [4 ]Ortho Corporation, Shibuya 150-0002, Japan; hashimoto@ 123456kenko.co.jp (S.H.); aoyama@ 123456kenko.co.jp (K.A.)
                [5 ]Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; yoshikai@ 123456bioreg.kyushu-u.ac.jp
                Author notes
                [* ]Correspondence: katsu.suzu@ 123456waseda.jp ; Tel.: +81-04-2947-6898
                [†]

                These authors contributed equally to this article.

                Author information
                https://orcid.org/0000-0002-0606-5759
                https://orcid.org/0000-0002-6572-5809
                Article
                biomedicines-08-00051
                10.3390/biomedicines8030051
                7148542
                32143279
                c86eceec-e9b9-4a6c-8c43-438a4d454915
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 February 2020
                : 02 March 2020
                Categories
                Article

                hyperimmunized milk,exercise,inflammation,intestinal permeability,cytokine

                Comments

                Comment on this article