7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and characterization of a subtelomeric satellite DNA in Callitrichini monkeys

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Repetitive DNAs are abundant fast-evolving components of eukaryotic genomes, which often possess important structural and functional roles. Despite their ubiquity, repetitive DNAs are poorly studied when compared with the genic fraction of genomes. Here, we took advantage of the availability of the sequenced genome of the common marmoset Callithrix jacchus to assess its satellite DNAs (satDNAs) and their distribution in Callitrichini. After clustering analysis of all reads and comparisons by similarity, we identified a satDNA composed by 171 bp motifs, named MarmoSAT, which composes 1.09% of the C. jacchus genome. Fluorescent in situ hybridization on chromosomes of species from the genera Callithrix, Mico and Callimico showed that MarmoSAT had a subtelomeric location. In addition to the common monomeric, we found that MarmoSAT was also organized in higher-order repeats of 338 bp in Callimico goeldii. Our phylogenetic analyses showed that MarmoSAT repeats from C. jacchus lack chromosome-specific features, suggesting exchange events among subterminal regions of non-homologous chromosomes. MarmoSAT is transcribed in several tissues of C. jacchus, with the highest transcription levels in spleen, thymus and heart. The transcription profile and subtelomeric location suggest that MarmoSAT may be involved in the regulation of telomerase and modulation of telomeric chromatin.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences

          Increased reliance on computational approaches in the life sciences has revealed grave concerns about how accessible and reproducible computation-reliant results truly are. Galaxy http://usegalaxy.org, an open web-based platform for genomic research, addresses these problems. Galaxy automatically tracks and manages data provenance and provides support for capturing the context and intent of computational methods. Galaxy Pages are interactive, web-based documents that provide users with a medium to communicate a complete computational analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads.

            Repetitive DNA makes up large portions of plant and animal nuclear genomes, yet it remains the least-characterized genome component in most species studied so far. Although the recent availability of high-throughput sequencing data provides necessary resources for in-depth investigation of genomic repeats, its utility is hampered by the lack of specialized bioinformatics tools and appropriate computational resources that would enable large-scale repeat analysis to be run by biologically oriented researchers. Here we present RepeatExplorer, a collection of software tools for characterization of repetitive elements, which is accessible via web interface. A key component of the server is the computational pipeline using a graph-based sequence clustering algorithm to facilitate de novo repeat identification without the need for reference databases of known elements. Because the algorithm uses short sequences randomly sampled from the genome as input, it is ideal for analyzing next-generation sequence reads. Additional tools are provided to aid in classification of identified repeats, investigate phylogenetic relationships of retroelements and perform comparative analysis of repeat composition between multiple species. The server allows to analyze several million sequence reads, which typically results in identification of most high and medium copy repeats in higher plant genomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome.

              Computational methods for automated genome annotation are critical to understanding and interpreting the bewildering mass of genomic sequence data presently being generated and released. A neural network model of the structural and compositional properties of a eukaryotic core promoter region has been developed and its application for analysis of the Drosophila melanogaster genome is presented. The model uses a time-delay architecture, a special case of a feed-forward neural network. The structure of this model allows for variable spacing between functional binding sites, which is known to play a key role in the transcription initiation process. Application of this model to a test set of core promoters not only gave better discrimination of potential promoter sites than previous statistical or neural network models, but also revealed indirectly subtle properties of the transcription initiation signal. When tested in the Adh region of 2.9 Mbases of the Drosophila genome, the neural network for promoter prediction (NNPP) program that incorporates the time-delay neural network model gives a recognition rate of 75% (69/92) with a false positive rate of 1/547 bases. The present work can be regarded as one of the first intensive studies that applies novel gene regulation technologies to the identification of the complex gene regulation sites in the genome of Drosophila melanogaster.
                Bookmark

                Author and article information

                Contributors
                Journal
                DNA Res
                DNA Res
                dnares
                DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes
                Oxford University Press
                1340-2838
                1756-1663
                August 2017
                17 July 2017
                17 July 2017
                : 24
                : 4
                : 377-385
                Affiliations
                [1 ]Universidade Federal de Minas Gerais, Laboratório de Citogenômica Evolutiva, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Avenida Presidente Antônio Carlos, 6627 - Pampulha, 31270-901, Belo Horizonte, Brazil
                [2 ]Universidade Federal de Minas Gerais, Laboratório de Taxonomia e Biologia de Invertebrados, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
                [3 ]Universidade de São Paulo, Laboratório de Citogenética de Vertebrados, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, São Paulo, Brazil
                [4 ]University of Florence, Department of Biology, Florence, Italy
                Author notes
                [* ]To whom correspondence should be addressed. Tel. +5531 34092965. Email: svartmanm@ 123456icb.ufmg.br
                [†]

                These authors contributed equally to this work.

                Edited by Dr. Minoru Yoshida

                Article
                dsx010
                10.1093/dnares/dsx010
                5737874
                28854689
                c8771196-008c-4aa6-bac7-7cebcc7c6ade
                © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 16 September 2016
                : 2 March 2017
                Page count
                Pages: 9
                Categories
                Full Papers

                Genetics
                heterochromatin,repetitive dna,platyrrhini
                Genetics
                heterochromatin, repetitive dna, platyrrhini

                Comments

                Comment on this article