63
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Ups and Downs of Mutation Frequencies during Aging Can Account for the Apert Syndrome Paternal Age Effect

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apert syndrome is almost always caused by a spontaneous mutation of paternal origin in one of two nucleotides in the fibroblast growth factor receptor 2 gene (FGFR2). The incidence of this disease increases with the age of the father (paternal age effect), and this increase is greater than what would be expected based on the greater number of germ-line divisions in older men. We use a highly sensitive PCR assay to measure the frequencies of the two causal mutations in the sperm of over 300 normal donors with a wide range of ages. The mutation frequencies increase with the age of the sperm donors, and this increase is consistent with the increase in the incidence rate. In both the sperm data and the birth data, the increase is non-monotonic. Further, after normalizing for age, the two Apert syndrome mutation frequencies are correlated within individual sperm donors. We consider a mathematical model for germ-line mutation which reproduces many of the attributes of the data. This model, with other evidence, suggests that part of the increase in both the sperm data and the birth data is due to selection for mutated premeiotic cells. It is likely that a number of other genetic diseases have similar features.

          Author Summary

          Epidemiological studies show that the incidence of some genetic diseases increases with the age of the father. This “paternal age effect” is traditionally explained by the fact that, as men age, the male germ-line cells continue to divide, and each division presents an additional chance for mutation. Apert syndrome is an example of such a disease; virtually all cases are caused by spontaneous base substitution mutations of paternal origin at either one of just two sites. In this paper, we measure the frequencies of these two mutations in the sperm of unaffected men of different ages and find a frequency increase with age similar to what has been found in the data on Apert syndrome births. We also find (1) the increase in mutation frequency is not strictly monotonic, featuring a decrease followed by an increase in middle age, and (2) after normalizing for age, the two mutation frequencies are correlated within individual donors. The mutation frequency increase we observed is greater than expected based just on the number of male germ-line divisions. Along with other evidence, our data supports a novel explanation for the paternal age effect whereby Apert syndrome mutations, though harmful to the child, confer an advantage to premeiotic cells in the male germ-line that carry such a mutation. A number of other genetic diseases may exhibit similar features.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Estimate of the mutation rate per nucleotide in humans.

          Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The origins, patterns and implications of human spontaneous mutation.

            J F Crow (2000)
            The germline mutation rate in human males, especially older males, is generally much higher than in females, mainly because in males there are many more germ-cell divisions. However, there are some exceptions and many variations. Base substitutions, insertion-deletions, repeat expansions and chromosomal changes each follow different rules. Evidence from evolutionary sequence data indicates that the overall rate of deleterious mutation may be high enough to have a large effect on human well-being. But there are ways in which the impact of deleterious mutations can be mitigated.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              All you wanted to know about spermatogonia but were afraid to ask.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2009
                July 2009
                10 July 2009
                : 5
                : 7
                : e1000558
                Affiliations
                [1 ]Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
                [2 ]Department of Biology, Stevenson University, Stevenson, Maryland, United States of America
                [3 ]Departments of Genetics and Genomic Sciences, Pediatrics, and Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, United States of America
                [4 ]Departments of Neurology and Psychiatry, Columbia University Medical Center, New York, New York, United States of America
                [5 ]Hereditary Disease Foundation, New York, New York, United States of America
                [6 ]Department of Obstetrics and Gynecology and Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
                University of Arizona, United States of America
                Author notes
                [¤]

                Current address: Fluidigm Corporation, South San Francisco, California, United States of America

                Conceived and designed the experiments: JQ NA PC. Performed the experiments: SRY JQ. Analyzed the data: PC. Contributed reagents/materials/analysis tools: RLG EWJ NSW RS. Wrote the paper: NA PC.

                Article
                09-PLGE-RA-0389R2
                10.1371/journal.pgen.1000558
                2700275
                19593369
                c87a33af-f510-408a-b240-5c1ccbf8bbf0
                Yoon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 March 2009
                : 12 June 2009
                Page count
                Pages: 9
                Categories
                Research Article
                Evolutionary Biology/Human Evolution
                Genetics and Genomics/Bioinformatics
                Genetics and Genomics/Medical Genetics
                Molecular Biology

                Genetics
                Genetics

                Comments

                Comment on this article