15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      V1647 ORIONIS: Keck/Nirspec 2 MICRON Echelle Observations

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present new Keck II NIRSPEC high-spectral resolution 2 um echelle observations of the young eruptive variable star V1647 Orionis. This star went into outburst in late 2003 and faded to its pre-outburst brightness after approximately 26 months. V1647 Orionis is the illuminating star of McNeil's Nebula and is located near M 78 in the Lynds 1630 dark cloud. Our spectra have a resolving power of approximately 18,000 and allow us to study in detail the weak absorption features present on the strong near-IR veiled continuum. An analysis of the echelle orders containing Mg I (2.1066 um) and Al I (2.1099 um), Br-gamma (2.1661 um), the Na I doublet (2.206 and 2.209 um), and the CO overtone bandhead (2.2935 um) gives us considerable information on the physical and geometric characteristics of the regions producing these spectral features. We find that, at high-spectral resolution, V1647 Orionis in quiescence resembles a significant number of FU Orionis type eruptive variables and does not appear similar to the quiescent EX Lupi variables observed. This correspondence is discussed and implications for the evolutionary state of the star are considered.

          Related collections

          Author and article information

          Journal
          21 October 2008
          Article
          10.1088/0004-6256/137/2/2968
          0810.3944
          c87b2cd6-4ba3-46b0-9af0-77ef3a889705

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          37 pages, 3 Tables, 17 Figures
          astro-ph

          Comments

          Comment on this article