73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel nanofibrous composite scaffold composed of super-paramagnetic γ-Fe 2O 3 nanoparticles (MNP), hydroxyapatite nanoparticles (nHA) and poly lactide acid (PLA) was prepared using electrospinning technique. The scaffold well responds extern static magnetic field with typical saturation magnetization value of 0.049 emu/g as well as possesses nanofibrous architecture. The scaffolds were implanted in white rabbit model of lumbar transverse defects. Permanent magnets are fixed in the rabbit cages to provide static magnetic field for the rabbits post surgery. Results show that MNP incorporated in the nanofibers endows the scaffolds super-paramagnetic responsive under the applied static magnetic field, which accelerates new bone tissue formation and remodeling in the rabbit defect. The scaffold also exhibits good compatibility of CK, Cr, ALT and ALP within normal limits in the serum within 110 days post implantation. In conclusion, the super-paramagnetic responding scaffold with applying of external magnetic field provides a novel strategy for scaffold-guided bone repair.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Biomimetic nanofibrous scaffolds for bone tissue engineering.

          Bone tissue engineering is a highly interdisciplinary field that seeks to tackle the most challenging bone-related clinical issues. The major components of bone tissue engineering are the scaffold, cells, and growth factors. This review will focus on the scaffold and recent advancements in developing scaffolds that can mimic the natural extracellular matrix of bone. Specifically, these novel scaffolds mirror the nanofibrous collagen network that comprises the majority of the non-mineral portion of bone matrix. Using two main fabrication techniques, electrospinning and thermally-induced phase separation, and incorporating bone-like minerals, such as hydroxyapatite, composite nanofibrous scaffolds can improve cell adhesion, stem cell differentiation, and tissue formation. This review will cover the two main processing techniques and how they are being applied to fabricate scaffolds for bone tissue engineering. It will then cover how these scaffolds can enhance the osteogenic capabilities of a variety of cell types and survey the ability of the constructs to support the growth of clinically relevant bone tissue. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrospun nanofibers for regenerative medicine.

            This Progress Report reviews recent progress in applying electrospun nanofibers to the emerging field of regenerative medicine. It begins with a brief introduction to electrospinning and nanofibers, with a focus on issues related to the selection of materials, incorporation of bioactive molecules, degradation characteristics, control of mechanical properties, and facilitation of cell infiltration. Next, a number of approaches to fabricate scaffolds from electrospun nanofibers are discussed, including techniques for controlling the alignment of nanofibers and for producing scaffolds with complex architectures. The article also highlights applications of the nanofiber-based scaffolds in four areas of regenerative medicine that involve nerves, dural tissues, tendons, and the tendon-to-bone insertion site. The Progress Report concludes with perspectives on challenges and future directions for design, fabrication, and utilization of scaffolds based on electrospun nanofibers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Silk fibroin in tissue engineering.

              Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                13 September 2013
                2013
                : 3
                : 2655
                Affiliations
                [1 ]Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Science & Peking Union Medical College
                [2 ]Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College
                [3 ]School of Biological Science and Medical Engineering, Southeastern University
                [4 ]Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College
                [5 ]These authors contributed equally to this work.
                Author notes
                Article
                srep02655
                10.1038/srep02655
                3772377
                24030698
                c87bf72b-1d84-4b11-ae40-8f5b0392a94c
                Copyright © 2013, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 12 June 2013
                : 23 August 2013
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article