13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology

      research-article
      , ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skeletal muscle physiology and the mechanisms of muscle diseases can be effectively studied by an in-vitro tissue model produced by muscle tissue engineering. Engineered human cell-based tissues are required more than ever because of the advantages they bring as tissue models in research studies. This study reports on a production method of a human skeletal myofiber sheet that demonstrates biomimetic properties including the aligned structure of myofibers, basement membrane-like structure of the extracellular matrix, and unidirectional contractile ability. The contractile ability and drug responsibility shown in this study indicate that this engineered muscle tissue has potential as a human cell-based tissue model for clinically relevant in-vitro studies in muscle physiology and drug discovery. Moreover, this engineered tissue can be used to better understand the relationships between mechanical stress and myogenesis, including muscle growth and regeneration. In this study, periodic exercise induced by continuous electrical pulse stimulation enhanced the contractile ability of the engineered myofibers and the secretion of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) from the exercising myofibers. Since the physiology of skeletal muscle is directly related to mechanical stress, these features point to application as a tissue model and platform for future biological studies of skeletal muscle including muscle metabolism, muscle atrophy and muscle regeneration.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Muscles, exercise and obesity: skeletal muscle as a secretory organ.

          During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines. The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal L cells and pancreatic islets. Other myokines include the osteogenic factors IGF-1 and FGF-2; FSTL-1, which improves the endothelial function of the vascular system; and the PGC-1α-dependent myokine irisin, which drives brown-fat-like development. Studies in the past few years suggest the existence of yet unidentified factors, secreted from muscle cells, which may influence cancer cell growth and pancreas function. Many proteins produced by skeletal muscle are dependent upon contraction; therefore, physical inactivity probably leads to an altered myokine response, which could provide a potential mechanism for the association between sedentary behaviour and many chronic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lack of exercise is a major cause of chronic diseases.

            Chronic diseases are major killers in the modern era. Physical inactivity is a primary cause of most chronic diseases. The initial third of the article considers: activity and prevention definitions; historical evidence showing physical inactivity is detrimental to health and normal organ functional capacities; cause versus treatment; physical activity and inactivity mechanisms differ; gene-environment interaction (including aerobic training adaptations, personalized medicine, and co-twin physical activity); and specificity of adaptations to type of training. Next, physical activity/exercise is examined as primary prevention against 35 chronic conditions [accelerated biological aging/premature death, low cardiorespiratory fitness (VO2max), sarcopenia, metabolic syndrome, obesity, insulin resistance, prediabetes, type 2 diabetes, nonalcoholic fatty liver disease, coronary heart disease, peripheral artery disease, hypertension, stroke, congestive heart failure, endothelial dysfunction, arterial dyslipidemia, hemostasis, deep vein thrombosis, cognitive dysfunction, depression and anxiety, osteoporosis, osteoarthritis, balance, bone fracture/falls, rheumatoid arthritis, colon cancer, breast cancer, endometrial cancer, gestational diabetes, pre-eclampsia, polycystic ovary syndrome, erectile dysfunction, pain, diverticulitis, constipation, and gallbladder diseases]. The article ends with consideration of deterioration of risk factors in longer-term sedentary groups; clinical consequences of inactive childhood/adolescence; and public policy. In summary, the body rapidly maladapts to insufficient physical activity, and if continued, results in substantial decreases in both total and quality years of life. Taken together, conclusive evidence exists that physical inactivity is one important cause of most chronic diseases. In addition, physical activity primarily prevents, or delays, chronic diseases, implying that chronic disease need not be an inevitable outcome during life. © 2012 American Physiological Society. Compr Physiol 2:1143-1211, 2012.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microscale culture of human liver cells for drug development.

              Tissue function depends on hierarchical structures extending from single cells ( approximately 10 microm) to functional subunits (100 microm-1 mm) that coordinate organ functions. Conventional cell culture disperses tissues into single cells while neglecting higher-order processes. The application of semiconductor-driven microtechnology in the biomedical arena now allows fabrication of microscale tissue subunits that may be functionally improved and have the advantages of miniaturization. Here we present a miniaturized, multiwell culture system for human liver cells with optimized microscale architecture that maintains phenotypic functions for several weeks. The need for such models is underscored by the high rate of pre-launch and post-market attrition of pharmaceuticals due to liver toxicity. We demonstrate utility through assessment of gene expression profiles, phase I/II metabolism, canalicular transport, secretion of liver-specific products and susceptibility to hepatotoxins. The combination of microtechnology and tissue engineering may enable development of integrated tissue models in the so-called 'human on a chip'.
                Bookmark

                Author and article information

                Contributors
                takahashi.hironobu@twmu.ac.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                17 September 2018
                17 September 2018
                2018
                : 8
                : 13932
                Affiliations
                ISNI 0000 0001 0720 6587, GRID grid.410818.4, Institute of Advanced Biomedical Engineering and Science, , Tokyo Women’s Medical University, ; Tokyo, Japan
                Article
                32163
                10.1038/s41598-018-32163-1
                6141563
                30224737
                c889c3f5-f9ff-4f04-aea5-4b6f4c3588a5
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 May 2018
                : 3 September 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article