38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimal cut-off of homeostasis model assessment of insulin resistance (HOMA-IR) for the diagnosis of metabolic syndrome: third national surveillance of risk factors of non-communicable diseases in Iran (SuRFNCD-2007)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          We have recently determined the optimal cut-off of the homeostatic model assessment of insulin resistance for the diagnosis of insulin resistance (IR) and metabolic syndrome (MetS) in non-diabetic residents of Tehran, the capital of Iran. The aim of the present study is to establish the optimal cut-off at the national level in the Iranian population with and without diabetes.

          Methods

          Data of the third National Surveillance of Risk Factors of Non-Communicable Diseases, available for 3,071 adult Iranian individuals aging 25-64 years were analyzed. MetS was defined according to the Adult Treatment Panel III (ATPIII) and International Diabetes Federation (IDF) criteria. HOMA-IR cut-offs from the 50th to the 95th percentile were calculated and sensitivity, specificity, and positive likelihood ratio for MetS diagnosis were determined. The receiver operating characteristic (ROC) curves of HOMA-IR for MetS diagnosis were depicted, and the optimal cut-offs were determined by two different methods: Youden index, and the shortest distance from the top left corner of the curve.

          Results

          The area under the curve (AUC) (95%CI) was 0.650 (0.631-0.670) for IDF-defined MetS and 0.683 (0.664-0.703) with the ATPIII definition. The optimal HOMA-IR cut-off for the diagnosis of IDF- and ATPIII-defined MetS in non-diabetic individuals was 1.775 (sensitivity: 57.3%, specificity: 65.3%, with ATPIII; sensitivity: 55.9%, specificity: 64.7%, with IDF). The optimal cut-offs in diabetic individuals were 3.875 (sensitivity: 49.7%, specificity: 69.6%) and 4.325 (sensitivity: 45.4%, specificity: 69.0%) for ATPIII- and IDF-defined MetS, respectively.

          Conclusion

          We determined the optimal HOMA-IR cut-off points for the diagnosis of MetS in the Iranian population with and without diabetes.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity.

          To evaluate whether the homeostasis model assessment (HOMA) is a reliable surrogate measure of in vivo insulin sensitivity in humans. In the present study, we compared insulin sensitivity as assessed by a 4-h euglycemic (approximately 5 mmol/l) hyperinsulinemic (approximately 300 pmol/l) clamp with HOMA in 115 subjects with various degrees of glucose tolerance and insulin sensitivity. We found a strong correlation between clamp-measured total glucose disposal and HOMA-estimated insulin sensitivity (r = -0.820, P<0.0001), with no substantial differences between men (r = -0.800) and women (r = -0.796), younger (aged <50 years, r = -0.832) and older (r = -0.800) subjects, nonobese (BMI <27 kg/m2, r = -0.800) and obese (r = -0.765) subjects, nondiabetic (r = -0.754) and diabetic (r = -0.695) subjects, and normotensive ( r = -0.786) and hypertensive (r = -0.762) subjects. Also, we found good agreement between the two methods in the categorization of subjects according to insulin sensitivity (weighted k = 0.63). We conclude that the HOMA can be reliably used in large-scale or epidemiological studies in which only a fasting blood sample is available to assess insulin sensitivity
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevalence of insulin resistance in metabolic disorders: the Bruneck Study.

            The prevalence of insulin resistance in the most common metabolic disorders is still an undefined issue. We assessed the prevalence rates of insulin resistance in subjects with impaired glucose tolerance (IGT), NIDDM, dyslipidemia, hyperuricemia, and hypertension as identified within the frame of the Bruneck Study. The study comprised an age- and sex-stratified random sample of the general population (n = 888; aged 40-79 years). Insulin resistance was estimated by homeostasis model assessment (HOMA(IR)), preliminarily validated against a euglycemic-hyperinsulinemic clamp in 85 subjects. The lower limit of the top quintile of HOMA(IR) distribution (i.e., 2.77) in nonobese subjects with no metabolic disorders (n = 225) was chosen as the threshold for insulin resistance. The prevalence of insulin resistance was 65.9% in IGT subjects, 83.9% in NIDDM subjects, 53.5% in hypercholesterolemia subjects, 84.2% in hypertriglyceridemia subjects, 88.1% in subjects with low HDL cholesterol, 62.8% in hyperuricemia subjects, and 58.0% in hypertension subjects. The prevalence of insulin resistance in subjects with the combination of glucose intolerance (IGT or NIDDM), dyslipidemia (hypercholesterolemia and/or hypertriglyceridemia and/or low HDL cholesterol), hyperuricemia, and hypertension (n = 21) was 95.2%. In isolated hypercholesterolemia, hypertension, or hyperuricemia, prevalence rates of insulin resistance were not higher than that in nonobese normal subjects. An appreciable number of subjects (n = 85, 9.6% of the whole population) was insulin resistant but free of IGT, NIDDM, dyslipidemia, hyperuricemia, and hypertension. These results from a population-based study documented that 1) in hypertriglyceridemia and a low HDL cholesterol state, insulin resistance is as common as in NIDDM, whereas it is less frequent in hypercholesterolemia, hyperuricemia, and hypertension; 2) the vast majority of subjects with multiple metabolic disorders are insulin resistant; 3) in isolated hypercholesterolemia, hyperuricemia, or hypertension, insulin resistance is not more frequent than can be expected by chance alone; and 4) in the general population, insulin resistance can be found even in the absence of any major metabolic disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence of diabetes and impaired fasting glucose in the adult population of Iran: National Survey of Risk Factors for Non-Communicable Diseases of Iran.

              Despite concerns regarding a diabetes epidemic in the Middle East, internationally published data on national estimates of prevalent type 2 diabetes in Iran do not exist. With this article, we document a dramatically high prevalence of diabetes in Iran. Our data are based on the results of the first Survey of Risk Factors of Non-Communicable Diseases of Iran, 2005. In this national cross-sectional survey, 70,981 Iranian citizens aged 25-64 years were recruited. We found that 7.7% of adults aged 25-64 years, or 2 million adults, have diabetes, among whom one-half are undiagnosed. An additional 16.8%, or 4.4 million, of Iranian adults have impaired fasting glucose. The high prevalence of diabetes in working-age adults is an ominous sign for this developing nation. As the relatively young Iranian population ages in the future and urbanization continues or accelerates, the prevalence of diabetes will likely escalate.
                Bookmark

                Author and article information

                Journal
                Nutr Metab (Lond)
                Nutrition & Metabolism
                BioMed Central
                1743-7075
                2010
                7 April 2010
                : 7
                : 26
                Affiliations
                [1 ]Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
                [2 ]Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
                [3 ]Center for Disease Control, Ministry of Health and Medical Education, Tehran, Iran
                Article
                1743-7075-7-26
                10.1186/1743-7075-7-26
                2857836
                20374655
                c89545f2-c630-46da-9ae4-dd2fe196ae8f
                Copyright ©2010 Esteghamati et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 October 2009
                : 7 April 2010
                Categories
                Research

                Nutrition & Dietetics
                Nutrition & Dietetics

                Comments

                Comment on this article