12
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Klinefelter syndrome and testosterone treatment: a national cohort study on thrombosis risk

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Klinefelter syndrome (KS), 47,XXY, can be viewed as a disease model for investigating the risk of thrombosis in male hypogonadism and the subsequent risk related to testosterone treatment. We describe rates of thrombotic risk factors, thrombosis and thrombosis mortality in KS and the association with testosterone treatment.

          Methods

          National registry-based matched cohort study with follow-up from 1995 to 2016 set in Denmark. For the study, 1155 men with KS were each matched by year and month of birth to 100 men from the background population. First thrombotic events and thrombosis mortality was evaluated by event rates and hazard ratios (HRs) and by applying testosterone treatment as a time-dependent covariate.

          Results

          The KS cohort had higher incidence of venous thromboembolism relative to the comparison cohort (HR, 3.95; 95% CI, 2.83–5.52). Total thrombotic deaths were increased in KS (HR, 1.76; 95% CI, 1.18–2.62), and all-cause mortality was increased in KS following arterial thrombosis (HR 1.73; 95% CI 1.22–2.47). Only 48.7% of men with KS redeemed prescriptions for testosterone. Untreated men with KS were on average born 12 years before those treated, and the majority of untreated men with KS with available biochemistry were hypogonadal. Testosterone treatment in KS was associated with a non-significant decrease in venous thromboembolism and thrombotic deaths.

          Conclusion

          Thrombosis and thrombotic deaths are increased in KS. Only half of the men with KS ever received testosterone treatment, despite overt hypogonadism in the non-treated. Testosterone treatment in Klinefelter syndrome was insignificantly associated with lower incidence rates of venous thrombosis and thrombotic deaths.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Adverse events associated with testosterone administration.

          Testosterone supplementation has been shown to increase muscle mass and strength in healthy older men. The safety and efficacy of testosterone treatment in older men who have limitations in mobility have not been studied. Community-dwelling men, 65 years of age or older, with limitations in mobility and a total serum testosterone level of 100 to 350 ng per deciliter (3.5 to 12.1 nmol per liter) or a free serum testosterone level of less than 50 pg per milliliter (173 pmol per liter) were randomly assigned to receive placebo gel or testosterone gel, to be applied daily for 6 months. Adverse events were categorized with the use of the Medical Dictionary for Regulatory Activities classification. The data and safety monitoring board recommended that the trial be discontinued early because there was a significantly higher rate of adverse cardiovascular events in the testosterone group than in the placebo group. A total of 209 men (mean age, 74 years) were enrolled at the time the trial was terminated. At baseline, there was a high prevalence of hypertension, diabetes, hyperlipidemia, and obesity among the participants. During the course of the study, the testosterone group had higher rates of cardiac, respiratory, and dermatologic events than did the placebo group. A total of 23 subjects in the testosterone group, as compared with 5 in the placebo group, had cardiovascular-related adverse events. The relative risk of a cardiovascular-related adverse event remained constant throughout the 6-month treatment period. As compared with the placebo group, the testosterone group had significantly greater improvements in leg-press and chest-press strength and in stair climbing while carrying a load. In this population of older men with limitations in mobility and a high prevalence of chronic disease, the application of a testosterone gel was associated with an increased risk of cardiovascular adverse events. The small size of the trial and the unique population prevent broader inferences from being made about the safety of testosterone therapy. (ClinicalTrials.gov number, NCT00240981.) 2010 Massachusetts Medical Society
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Positive predictive value of cardiovascular diagnoses in the Danish National Patient Registry: a validation study

            Objective The majority of cardiovascular diagnoses in the Danish National Patient Registry (DNPR) remain to be validated despite extensive use in epidemiological research. We therefore examined the positive predictive value (PPV) of cardiovascular diagnoses in the DNPR. Design Population-based validation study. Setting 1 university hospital and 2 regional hospitals in the Central Denmark Region, 2010–2012. Participants For each cardiovascular diagnosis, up to 100 patients from participating hospitals were randomly sampled during the study period using the DNPR. Main outcome measure Using medical record review as the reference standard, we examined the PPV for cardiovascular diagnoses in the DNPR, coded according to the International Classification of Diseases, 10th Revision. Results A total of 2153 medical records (97% of the total sample) were available for review. The PPVs ranged from 64% to 100%, with a mean PPV of 88%. The PPVs were ≥90% for first-time myocardial infarction, stent thrombosis, stable angina pectoris, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, takotsubo cardiomyopathy, arterial hypertension, atrial fibrillation or flutter, cardiac arrest, mitral valve regurgitation or stenosis, aortic valve regurgitation or stenosis, pericarditis, hypercholesterolaemia, aortic dissection, aortic aneurysm/dilation and arterial claudication. The PPVs were between 80% and 90% for recurrent myocardial infarction, first-time unstable angina pectoris, pulmonary hypertension, bradycardia, ventricular tachycardia/fibrillation, endocarditis, cardiac tumours, first-time venous thromboembolism and between 70% and 80% for first-time and recurrent admission due to heart failure, first-time dilated cardiomyopathy, restrictive cardiomyopathy and recurrent venous thromboembolism. The PPV for first-time myocarditis was 64%. The PPVs were consistent within age, sex, calendar year and hospital categories. Conclusions The validity of cardiovascular diagnoses in the DNPR is overall high and sufficient for use in research since 2010.
              • Record: found
              • Abstract: found
              • Article: not found

              Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels.

              Rates of testosterone therapy are increasing and the effects of testosterone therapy on cardiovascular outcomes and mortality are unknown. A recent randomized clinical trial of testosterone therapy in men with a high prevalence of cardiovascular diseases was stopped prematurely due to adverse cardiovascular events raising concerns about testosterone therapy safety. To assess the association between testosterone therapy and all-cause mortality, myocardial infarction (MI), or stroke among male veterans and to determine whether this association is modified by underlying coronary artery disease. A retrospective national cohort study of men with low testosterone levels (<300 ng/dL) who underwent coronary angiography in the Veterans Affairs (VA) system between 2005 and 2011. Primary outcome was a composite of all-cause mortality, MI, and ischemic stroke. Of the 8709 men with a total testosterone level lower than 300 ng/dL, 1223 patients started testosterone therapy after a median of 531 days following coronary angiography. Of the 1710 outcome events, 748 men died, 443 had MIs, and 519 had strokes. Of 7486 patients not receiving testosterone therapy, 681 died, 420 had MIs, and 486 had strokes. Among 1223 patients receiving testosterone therapy, 67 died, 23 had MIs, and 33 had strokes. At 3 years after coronary angiography, the Kaplan-Meier estimated cumulative percentages with events were 19.9%in the no testosterone therapy group vs 25.7%in the testosterone therapy group,with an absolute risk difference of 5.8%(95%CI, -1.4%to 13.1%) [corrected].The Kaplan-Meier estimated cumulative percentages with events among the no testosterone therapy group vs testosterone therapy group at 1 year after coronary angiography were 10.1% vs 11.3%; at 2 years, 15.4% vs 18.5%; and at 3 years, 19.9% vs 25.7 [corrected].There was no significant difference in the effect size of testosterone therapy among those with and without coronary artery disease (test for interaction, P = .41). Among a cohort of men in the VA health care system who underwent coronary angiography and had a low serum testosterone level, the use of testosterone therapy was associated with increased risk of adverse outcomes. These findings may inform the discussion about the potential risks of testosterone therapy.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                January 2020
                11 December 2019
                : 9
                : 1
                : 34-43
                Affiliations
                [1 ]Unit for Thrombosis Research , Institute of Regional Health Research, University of Southern Denmark and Department of Clinical Biochemistry, Hospital of South West Denmark, Esbjerg, Denmark
                [2 ]Department of Endocrinology and Internal Medicine , Aarhus University Hospital, Aarhus N, Denmark
                [3 ]Department of Clinical Epidemiology , Aarhus University Hospital, Aarhus N, Denmark
                [4 ]Department of Clinical Genetics , Aarhus University Hospital, Aarhus N, Denmark
                [5 ]Department of Public Health , Aarhus University, Aarhus C, Denmark
                [6 ]Department of Molecular Medicine , Aarhus University Hospital, Aarhus N, Denmark
                Author notes
                Correspondence should be addressed to S Chang: simon.chang@ 123456rsyd.dk
                Article
                EC-19-0433
                10.1530/EC-19-0433
                6993257
                31829966
                c8a35048-7370-49d5-a3a0-df7831591a52
                © 2020 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 09 December 2019
                : 11 December 2019
                Categories
                Research

                klinefelter syndrome,hypogonadism,testosterone treatment,thrombosis,cohort study

                Comments

                Comment on this article

                Related Documents Log