In order to monitor an animal population and to track individual animals in a non-invasive way, identification of individual animals based on certain distinctive characteristics is necessary. In this study, automatic image-based individual identification of the endangered Saimaa ringed seal ( Phoca hispida saimensis) is considered. Ringed seals have a distinctive permanent pelage pattern that is unique to each individual. This can be used as a basis for the identification process. The authors propose a framework that starts with segmentation of the seal from the background and proceeds to various post-processing steps to make the pelage pattern more visible and the identification easier. Finally, two existing species independent individual identification methods are compared with a challenging data set of Saimaa ringed seal images. The results show that the segmentation and proposed post-processing steps increase the identification performance.