Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Inferring High Quality Co-Travel Networks

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Social networks provide a new perspective for enterprises to better understand their customers and have attracted substantial attention in industry. However, inferring high quality customer social networks is a great challenge while there are no explicit customer relations in many traditional OLTP environments. In this paper, we study this issue in the field of passenger transport and introduce a new member to the family of social networks, which is named Co-Travel Networks, consisting of passengers connected by their co-travel behaviors. We propose a novel method to infer high quality co-travel networks of civil aviation passengers from their co-booking behaviors derived from the PNRs (Passenger Naming Records). In our method, to accurately evaluate the strength of ties, we present a measure of Co-Journey Times to count the co-travel times of complete journeys between passengers. We infer a high quality co-travel network based on a large encrypted PNR dataset and conduct a series of network analyses on it. The experimental results show the effectiveness of our inferring method, as well as some special characteristics of co-travel networks, such as the sparsity and high aggregation, compared with other kinds of social networks. It can be expected that such co-travel networks will greatly help the industry to better understand their passengers so as to improve their services. More importantly, we contribute a special kind of social networks with high strength of ties generated from very close and high cost travel behaviors, for further scientific researches on human travel behaviors, group travel patterns, high-end travel market evolution, etc., from the perspective of social networks.

      Related collections

      Most cited references 17

      • Record: found
      • Abstract: found
      • Article: not found

      Collective dynamics of 'small-world' networks.

      Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        The Strength of Weak Ties

          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Inferring friendship network structure by using mobile phone data.

          Data collected from mobile phones have the potential to provide insight into the relational dynamics of individuals. This paper compares observational data from mobile phones with standard self-report survey data. We find that the information from these two data sources is overlapping but distinct. For example, self-reports of physical proximity deviate from mobile phone records depending on the recency and salience of the interactions. We also demonstrate that it is possible to accurately infer 95% of friendships based on the observational data alone, where friend dyads demonstrate distinctive temporal and spatial patterns in their physical proximity and calling patterns. These behavioral patterns, in turn, allow the prediction of individual-level outcomes such as job satisfaction.
            Bookmark

            Author and article information

            Journal
            1305.4429

            Social & Information networks, General physics

            Comments

            Comment on this article