30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cis-Acting Pathways Selectively Enforce the Non-Immunogenicity of Shed Placental Antigen for Maternal CD8 T Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maternal immune tolerance towards the fetus and placenta is thought to be established in part by pathways that attenuate T cell priming to antigens released from the placenta into maternal blood. These pathways remain largely undefined and their existence, at face value, seems incompatible with a mother's need to maintain a functional immune system during pregnancy. A particular conundrum is evident if we consider that maternal antigen presenting cells, activated in order to prime T cells to pathogen-derived antigens, would also have the capacity to prime T cells to co-ingested placental antigens. Here, we address this paradox using a transgenic system in which placental membranes are tagged with a strong surrogate antigen (ovalbumin). We find that although a remarkably large quantity of acellular ovalbumin-containing placental material is released into maternal blood, splenic CD8 T cells in pregnant mice bearing unmanipulated T cell repertoires are not primed to ovalbumin even if the mice are intravenously injected with adjuvants. This failure was largely independent of regulatory T cells, and instead was linked to the intrinsic characteristics of the released material that rendered it selectively non-immunogenic, potentially by sequestering it from CD8α + dendritic cells. The release of ovalbumin-containing placental material into maternal blood thus had no discernable impact on CD8 T cell priming to soluble ovalbumin injected intravenously during pregnancy, nor did it induce long-term tolerance to ovalbumin. Together, these results outline a major pathway governing the maternal immune response to the placenta, and suggest how tolerance to placental antigens can be maintained systemically without being detrimental to host defense.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict.

          Regulatory T (Treg) cells, whose differentiation and function are controlled by X chromosome-encoded transcription factor Foxp3, are generated in the thymus (tTreg) and extrathymically (peripheral, pTreg), and their deficiency results in fatal autoimmunity. Here, we demonstrate that a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but dispensable for tTreg cell generation, is present only in placental mammals. CNS1 is largely composed of mammalian-wide interspersed repeats (MIR) that have undergone retrotransposition during early mammalian radiation. During pregnancy, pTreg cells specific to a model paternal alloantigen were generated in a CNS1-dependent manner and accumulated in the placenta. Furthermore, when mated with allogeneic, but not syngeneic, males, CNS1-deficient females showed increased fetal resorption accompanied by increased immune cell infiltration and defective remodeling of spiral arteries. Our results suggest that, during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells emerged in placental animals to enforce maternal-fetal tolerance. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection.

            Through genetic recombination, the adaptive immune system generates a diverse T cell repertoire allowing recognition of a vast spectrum of foreign antigens. Any given CD8+ T cell specificity is thought to be rare, but none have been directly quantified. Here, major histocompatibility complex tetramer and magnetic-bead technology were coupled to quantitate naive antigen-specific CD8+ T cells and the early response to infection. Among six specificities measured, the number of naive antigen-specific precursors ranged from approximately 80 to 1200 cells/mouse. After vesicular stomatitis virus infection, the antigen-specific CD8+ T cell response occurred in discrete phases: prolonged activation of a subset of cells over the first 72 hr followed by a rapid proliferative burst. Naive precursor frequency altered response kinetics and regulated immunodominance, as well as the time required for the responding population to shift toward CD62L(hi) memory cells. Thus, initial endogenous precursor frequencies were surprisingly diverse and not only regulated initial immune response characteristics but also controlled memory CD8+ T cell lineage decisions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection.

              Adoptive-transfer experiments with relatively large input numbers ( approximately 10(6)) of T cell receptor-transgenic (TCR-tg) T cells are widely used to model endogenous T cell responses to infection or immunization. We show that input numbers of naive TCR-tg T cells sufficient to squelch the endogenous response to the same epitope substantially alter the kinetics, proliferative expansion, phenotype, and efficiency of memory generation by the TCR-tg T cells in response to infection. Thus, responses from nonphysiologic input numbers of TCR-tg T cells fail to accurately mimic the endogenous T cell response. Importantly, seeding as few as approximately 10-50 TCR-tg T cells, which constitute a fraction of the endogenous repertoire, allowed vigorous proliferation and analysis of TCR-tg cells after infection in a scenario representing normal physiology for any individual TCR. These data strongly suggest that modeling the endogenous T cell response with TCR-tg cells will require every effort to approximate the endogenous precursor frequency.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                31 December 2013
                : 8
                : 12
                : e84064
                Affiliations
                [1 ]Department of Pathology, NYU School of Medicine, New York, New York, United States of America
                [2 ]NYU Cancer Institute, NYU School of Medicine, New York, New York, United States of America
                Otto-von-Guericke University Magdeburg, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CST ET MKC AE. Performed the experiments: CST ET MKC. Analyzed the data: CST ET MKC AE. Wrote the paper: AE.

                Article
                PONE-D-13-35472
                10.1371/journal.pone.0084064
                3877187
                24391885
                c8c52ed4-9b40-4775-9b1f-103dbaf9340f
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 August 2013
                : 12 November 2013
                Page count
                Pages: 9
                Funding
                This work was supported by a grant from the Leona M. and Harry B. Helmsley Charitable Trust to A.E. (09PG-T1D028). The NYU Cancer Institute's Immune Monitoring core facility was supported by a grant from the National Institutes of Health (NIH) National Cancer Institute (P30CA016087). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Reproductive System
                Reproductive Physiology
                Immunology
                Immune Cells
                T Cells
                Immunity
                Immune Tolerance
                Immunologic Subspecialties
                Reproductive Immunology
                Immunomodulation
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Anatomy and Physiology
                Immune Physiology
                Antigens
                Infectious Diseases
                Infectious Disease Control
                Obstetrics and Gynecology
                Pregnancy

                Uncategorized
                Uncategorized

                Comments

                Comment on this article