5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transcriptional activation of transforming growth factor-beta1 in mesangial cell culture by high glucose concentration.

      Kidney International
      Animals, Base Sequence, Binding Sites, genetics, Cell Line, Chloramphenicol O-Acetyltransferase, DNA, metabolism, Diabetic Nephropathies, etiology, Genes, Reporter, Glomerular Mesangium, drug effects, Glucose, pharmacology, Humans, Kinetics, Mice, Nuclear Proteins, Promoter Regions, Genetic, RNA, Messenger, Transcriptional Activation, Transfection, Transforming Growth Factor beta

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transforming growth factor-beta (TGF-beta) is an important hypertrophic and prosclerotic cytokine in the pathogenesis of diabetic nephropathy. The mechanisms of regulation of the TGF-beta system by high ambient glucose in kidney cells are incompletely defined. This study examined the mechanisms of regulation of TGF-beta1 expression by high glucose in murine mesangial cells (MMCs) in culture. MMCs were cultured in either normal (100 mg/dl) or high (450 mg/dl) D-glucose concentration. Total TGF-beta1 protein secretion and bioactivity, mRNA expression and stability, and gene transcription rate were measured; promoter-reporter chloramphenicol acetyltransferase (CAT) assays and electrophoretic mobility shift assay (EMSA) were performed to investigate the presence of putative glucose-response elements. Raising the ambient D-glucose concentration for 72 hours increased TGF-beta1 bioactivity in cell culture medium by 47% and total TGF-beta1 secretion by approximately 90%. Northern analysis demonstrated that the steady-state TGF-beta1 mRNA level was increased nearly twofold after 48 hours of growth in high glucose. This increase was not due to increased stability, as the half-life of the message was approximately five hours in both normal and high glucose conditions. Transcriptional activity of the TGF-beta1 gene (nuclear run-on assay) was increased by 73% in cells grown in high glucose for 24 hours. Transiently transfected MMCs with CAT constructs containing varying lengths of the murine TGF-beta1 promoter demonstrated that high glucose selectively increased the expression of only one of the constructs, pA835. Sequence inspection revealed the presence of a putative glucose responsive element, CACGTG, within this construct. High glucose in MMC culture for 24 hours increased nuclear protein binding to a probe containing this element when analyzed using EMSA. High glucose stimulates total TGF-beta1 protein production and bioactivity as well as the steady-state level of TGF-beta1 mRNA. The latter effect is due primarily to stimulation of gene transcription rate rather than message stability. Transcriptional activation by high glucose may involve a region in the TGF-beta1 promoter containing a putative glucose-response element.

          Related collections

          Author and article information

          Comments

          Comment on this article