15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Assays for Measuring the Catalytic Activity of Ribosome Inactivating Proteins

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ribosome-inactivating proteins (RIPs) are potent toxins that inactivate ribosomes by catalytically removing a specific adenine from the α-sarcin/ricin loop (SRL) of the large rRNA. Direct assays for measuring depurination activity and indirect assays for measuring the resulting translation inhibition have been employed to determine the enzyme activity of RIPs. Rapid and sensitive methods to measure the depurination activity of RIPs are critical for assessing their reaction mechanism, enzymatic properties, interaction with ribosomal proteins, ribotoxic stress signaling, in the search for inhibitors and in the detection and diagnosis of enteric infections. Here, we review the major assays developed for measuring the catalytic activity of RIPs, discuss their advantages and disadvantages and explain how they are used in understanding the catalytic mechanism, ribosome specificity, and dynamic enzymatic features of RIPs.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Diarrheagenic Escherichia coli.

          Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler's diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (entero-pathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins.

            Ricin is a potent cytotoxic protein derived from the higher plant Ricinus communis that inactivates eukaryotic ribosomes. In this paper we have studied the mechanism of action of ricin A-chain on rat liver ribosomes in vitro. Our findings indicate that the toxin inactivates the ribosomes by modifying both or either of two nucleoside residues, G4323 and A4324, in 28 S rRNA. These nucleotides are located close to the alpha-sarcin cleavage site and become resistant to all ribonucleases tested. The examination of the lability of phosphodiester bonds of these nucleotides to both mild alkaline digestion and aniline treatment at acidic pH suggests that the base of A4324 is removed by the toxin. This unique activity of ricin A-chain was also observed when naked 28 S rRNA is used as a substrate, indicating that the toxin directly acts on the RNA. Similar activity on 28 S rRNA is also exhibited by abrin and modeccin, ricin-related toxins, suggesting a general mechanistic pathway for ribosome inactivation by lectin toxins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks.

              Escherichia coli O157:H7, a toxin-producing food and waterborne bacterial pathogen, has been linked to large outbreaks of gastrointestinal illness for more than two decades. E. coli O157 causes a wide range of clinical illness that varies by outbreak, although factors that contribute to variation in disease severity are poorly understood. Several recent outbreaks involving O157 contamination of fresh produce (e.g., spinach) were associated with more severe disease, as defined by higher hemolytic uremic syndrome and hospitalization frequencies, suggesting that increased virulence has evolved. To test this hypothesis, we developed a system that detects SNPs in 96 loci and applied it to >500 E. coli O157 clinical strains. Phylogenetic analyses identified 39 SNP genotypes that differ at 20% of SNP loci and are separated into nine distinct clades. Differences were observed between clades in the frequency and distribution of Shiga toxin genes and in the type of clinical disease reported. Patients with hemolytic uremic syndrome were significantly more likely to be infected with clade 8 strains, which have increased in frequency over the past 5 years. Genome sequencing of a spinach outbreak strain, a member of clade 8, also revealed substantial genomic differences. These findings suggest that an emergent subpopulation of the clade 8 lineage has acquired critical factors that contribute to more severe disease. The ability to detect and rapidly genotype O157 strains belonging to such lineages is important and will have a significant impact on both disease diagnosis and treatment guidelines.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                14 June 2018
                June 2018
                : 10
                : 6
                : 240
                Affiliations
                Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA; yz334@ 123456gsbs.rutgers.edu (Y.Z.); xpli@ 123456sebs.rutgers.edu (X.-P.L.); jennifer.nielsen.kahn@ 123456gmail.com (J.N.K.)
                Author notes
                [* ]Correspondence: tumer@ 123456sebs.rutgers.edu ; Tel.: +01-848-932-6359
                Author information
                https://orcid.org/0000-0002-0585-2689
                Article
                toxins-10-00240
                10.3390/toxins10060240
                6024586
                29899209
                c8c74732-2641-467b-809f-d827fc07aebf
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 April 2018
                : 07 June 2018
                Categories
                Review

                Molecular medicine
                ribosome inactivating protein,depurination assays,translation inhibition assays

                Comments

                Comment on this article