374
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HMMER web server: interactive sequence similarity searching

      research-article
      * , ,
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          HMMER is a software suite for protein sequence similarity searches using probabilistic methods. Previously, HMMER has mainly been available only as a computationally intensive UNIX command-line tool, restricting its use. Recent advances in the software, HMMER3, have resulted in a 100-fold speed gain relative to previous versions. It is now feasible to make efficient profile hidden Markov model (profile HMM) searches via the web. A HMMER web server ( http://hmmer.janelia.org) has been designed and implemented such that most protein database searches return within a few seconds. Methods are available for searching either a single protein sequence, multiple protein sequence alignment or profile HMM against a target sequence database, and for searching a protein sequence against Pfam. The web server is designed to cater to a range of different user expertise and accepts batch uploading of multiple queries at once. All search methods are also available as RESTful web services, thereby allowing them to be readily integrated as remotely executed tasks in locally scripted workflows. We have focused on minimizing search times and the ability to rapidly display tabular results, regardless of the number of matches found, developing graphical summaries of the search results to provide quick, intuitive appraisement of them.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Pfam: clans, web tools and services

          Pfam is a database of protein families that currently contains 7973 entries (release 18.0). A recent development in Pfam has enabled the grouping of related families into clans. Pfam clans are described in detail, together with the new associated web pages. Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented. Pfam is available on the web in the UK (), the USA (), France () and Sweden ().
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Universal Protein Resource (UniProt) in 2010

            The primary mission of UniProt is to support biological research by maintaining a stable, comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive cross-references and querying interfaces freely accessible to the scientific community. UniProt is produced by the UniProt Consortium which consists of groups from the European Bioinformatics Institute (EBI), the Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR). UniProt is comprised of four major components, each optimized for different uses: the UniProt Archive, the UniProt Knowledgebase, the UniProt Reference Clusters and the UniProt Metagenomic and Environmental Sequence Database. UniProt is updated and distributed every 3 weeks and can be accessed online for searches or download at http://www.uniprot.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new generation of homology search tools based on probabilistic inference.

              Many theoretical advances have been made in applying probabilistic inference methods to improve the power of sequence homology searches, yet the BLAST suite of programs is still the workhorse for most of the field. The main reason for this is practical: BLAST's programs are about 100-fold faster than the fastest competing implementations of probabilistic inference methods. I describe recent work on the HMMER software suite for protein sequence analysis, which implements probabilistic inference using profile hidden Markov models. Our aim in HMMER3 is to achieve BLAST's speed while further improving the power of probabilistic inference based methods. HMMER3 implements a new probabilistic model of local sequence alignment and a new heuristic acceleration algorithm. Combined with efficient vector-parallel implementations on modern processors, these improvements synergize. HMMER3 uses more powerful log-odds likelihood scores (scores summed over alignment uncertainty, rather than scoring a single optimal alignment); it calculates accurate expectation values (E-values) for those scores without simulation using a generalization of Karlin/Altschul theory; it computes posterior distributions over the ensemble of possible alignments and returns posterior probabilities (confidences) in each aligned residue; and it does all this at an overall speed comparable to BLAST. The HMMER project aims to usher in a new generation of more powerful homology search tools based on probabilistic inference methods.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                1 July 2011
                1 July 2011
                18 May 2011
                18 May 2011
                : 39
                : Web Server issue , Web Server issue
                : W29-W37
                Affiliations
                HHMI Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 571 209 4316; Fax: +1 571 291 6418; Email: finnr@ 123456janelia.hhmi.org
                Article
                gkr367
                10.1093/nar/gkr367
                3125773
                21593126
                c8cba861-d26c-4b6c-9b78-d0d125e9a101
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 March 2011
                : 18 April 2011
                : 27 April 2011
                Page count
                Pages: 9
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article