8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Leukotriene modifiers as potential therapeutics for cardiovascular disease.

      Nature reviews. Drug discovery
      Animals, Cardiovascular Diseases, drug therapy, Humans, Inflammation, Leukotriene Antagonists, chemistry, therapeutic use, Leukotrienes, adverse effects, physiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Owing to their anti-inflammatory properties, leukotriene modifiers have been the primary therapeutics in asthma management for several years. Although blocking the inflammatory component of human disease is a long-standing and established concept, the use of leukotriene modifiers in treating the inflammatory component of cardiovascular disease encompassing atherosclerosis, myocardial infarction, stroke and aortic aneurysm has, surprisingly, only been seriously contemplated in the past few years. As reviewed here, several exciting studies have recently contributed to this expanding area of interest, and so far one leukotriene modifier has entered Phase II clinical trials to assess its potential for reducing the risk of heart attacks.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis.

          Leukotriene B4 (LTB4) is a potent chemoattractant that is primarily involved in inflammation, immune responses and host defence against infection. LTB4 activates inflammatory cells by binding to its cell-surface receptor (BLTR). LTB4 can also bind and activate the intranudear transcription factor PPAR alpha, resulting in the activation of genes that terminate inflammatory processes. Here we report the cloning of the complementary DNA encoding a cell-surface LTB4 receptor that is highly expressed in human leukocytes. Using a subtraction strategy, we isolated two cDNA clones (HL-1 and HL-5) from retinoic acid-differentiated HL-60 cells. These two clones contain identical open reading frames encoding a protein of 352 amino acids and predicted to contain seven membrane-spanning domains, but different 5'-untranslated regions. Membrane fractions of Cos-7 cells transfected with an expression construct containing the open reading frame of HL-5 showed specific LTB4 binding, with a K(d) (0.154nM) comparable to that observed in retinoic acid-differentiated HL-60 cells. In CHO cells stably expressing this receptor, LTB4 induced increases in intracellular calcium, D-myo-inositol-1,4,5-triphosphate (InsP3) accumulation, and inhibition of adenylyl cyclase. Furthermore, CHO cells expressing exogenous BLTR showed marked chemotactic responses towards low concentrations of LTB4 in a pertussis-toxin-sensitive manner. Our findings, together with previous reports, show that LTB4 is a unique lipid mediator that interacts with both cell-surface and nuclear receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prognostic value of myeloperoxidase in patients with chest pain.

            Inflammation is linked to adverse outcomes in acute coronary syndromes. Myeloperoxidase, an abundant leukocyte enzyme, is elevated in culprit lesions that have fissured or ruptured in patients with sudden death from cardiac causes. Numerous lines of evidence suggest mechanistic links between myeloperoxidase and both inflammation and cardiovascular disease. We assessed the value of plasma levels of myeloperoxidase as a predictor of the risk of cardiovascular events in 604 sequential patients presenting to the emergency department with chest pain. Initial plasma myeloperoxidase levels predicted the risk of myocardial infarction, even in patients who are negative for troponin T (<0.1 ng per milliliter) at base line (P<0.001). Myeloperoxidase levels at presentation also predicted the risk of major adverse cardiac events (myocardial infarction, the need for revascularization, or death) within 30 days and 6 months after presentation (P<0.001). In patients without evidence of myocardial necrosis (defined as those who were negative for troponin T), the base-line myeloperoxidase levels independently predicted the risk of major adverse coronary events at 30 days (unadjusted 2nd, 3rd, and 4th quartile odds ratios, 2.2 [95 percent confidence interval, 1.1 to 4.6], 4.2 [95 percent confidence interval, 2.1 to 8.4], and 4.1 [95 percent confidence interval, 2.0 to 8.4], respectively) and at 6 months. A single initial measurement of plasma myeloperoxidase independently predicts the early risk of myocardial infarction, as well as the risk of major adverse cardiac events in the ensuing 30-day and 6-month periods. Myeloperoxidase levels, in contrast to troponin T, creatine kinase MB isoform, and C-reactive protein levels, identified patients at risk for cardiac events in the absence of myocardial necrosis, highlighting its potential usefulness for risk stratification among patients who present with chest pain. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke.

              We mapped a gene predisposing to myocardial infarction to a locus on chromosome 13q12-13. A four-marker single-nucleotide polymorphism (SNP) haplotype in this locus spanning the gene ALOX5AP encoding 5-lipoxygenase activating protein (FLAP) is associated with a two times greater risk of myocardial infarction in Iceland. This haplotype also confers almost two times greater risk of stroke. Another ALOX5AP haplotype is associated with myocardial infarction in individuals from the UK. Stimulated neutrophils from individuals with myocardial infarction produce more leukotriene B4, a key product in the 5-lipoxygenase pathway, than do neutrophils from controls, and this difference is largely attributed to cells from males who carry the at-risk haplotype. We conclude that variants of ALOX5AP are involved in the pathogenesis of both myocardial infarction and stroke by increasing leukotriene production and inflammation in the arterial wall.
                Bookmark

                Author and article information

                Comments

                Comment on this article