24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-125a-3p/FUT5-FUT6 axis mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-Akt pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fucosyltransferase (FUT) family produces glycans, a fundamental event in several cancers, including colorectal cancer (CRC). miR-125a-3p is a non-coding RNA that can reduce cell proliferation and migration in cancer. In this study, we explored the levels of miR-125a-3p and FUT expression in human CRC tissues and two human CRC cell lines by qPCR. The results showed that miR-125a-3p, FUT5 and FUT6 are differentially expressed in normal and tumour tissues. On the basis of our previous research, FUT can be regulated by miRNA, which influences the proliferation and invasion of breast and hepatocellular cancer cells. We hypothesised that FUT5 and FUT6 may be regulated by miR-125a-3p. Luciferase reporter analyses were applied to identify potential target genes of miR-125a-3p. A functional study showed that miR-125a-3p overexpression can inhibit the proliferation, migration, invasion and angiogenesis of CRC cells via down-regulating FUT5 and FUT6. In addition, regulating miR-125a-3p, FUT5 or FUT6 expression markedly modulated the activity of the PI3K/Akt signalling pathway, and this effect of FUT5 or FUT6 could be reversed by transfection with miR-125a-3p-mimics. Taken together, our data suggest that both FUT5 and FUT6 can promote the development of CRC via the PI3K/Akt signalling pathway, which is regulated by miR-125a-3p. miR-125a-3p may serve as a predictive biomarker and a potential therapeutic target in CRC treatment.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA profiling: approaches and considerations.

          MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate the expression of thousands of genes in a broad range of organisms in both normal physiological contexts and in disease contexts. miRNA expression profiling is gaining popularity because miRNAs, as key regulators in gene expression networks, can influence many biological processes and also show promise as biomarkers for disease. Technological advances have spawned a multitude of platforms for miRNA profiling, and an understanding of the strengths and pitfalls of different approaches can aid in their effective use. Here, we review the major considerations for carrying out and interpreting results of miRNA-profiling studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues

            MicroRNAs (miRNAs) are short non-coding RNA molecules playing regulatory roles by repressing translation or cleaving RNA transcripts. Although the number of verified human miRNA is still expanding, only few have been functionally described. However, emerging evidences suggest the potential involvement of altered regulation of miRNA in pathogenesis of cancers and these genes are thought to function as both tumours suppressor and oncogenes. In our study, we examined by Real-Time PCR the expression of 156 mature miRNA in colorectal cancer. The analysis by several bioinformatics algorithms of colorectal tumours and adjacent non-neoplastic tissues from patients and colorectal cancer cell lines allowed identifying a group of 13 miRNA whose expression is significantly altered in this tumor. The most significantly deregulated miRNA being miR-31, miR-96, miR-133b, miR-135b, miR-145, and miR-183. In addition, the expression level of miR-31 was correlated with the stage of CRC tumor. Our results suggest that miRNA expression profile could have relevance to the biological and clinical behavior of colorectal neoplasia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of AKT kinases in cancer: implications for therapeutic targeting.

              The AKT1, AKT2, and AKT3 kinases have emerged as critical mediators of signal transduction pathways downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase. An ever-increasing list of AKT substrates has precisely defined the multiple functions of this kinase family in normal physiology and disease states. Cellular processes regulated by AKT include cell proliferation and survival, cell size and response to nutrient availability, intermediary metabolism, angiogenesis, and tissue invasion. All these processes represent hallmarks of cancer, and a burgeoning literature has defined the importance of AKT alterations in human cancer and experimental models of tumorigenesis, continuing the legacy represented by the original identification of v-Akt as the transforming oncogene of a murine retrovirus. Many oncoproteins and tumor suppressors intersect in the AKT pathway, finely regulating cellular functions at the interface of signal transduction and classical metabolic regulation. This careful balance is altered in human cancer by a variety of activating and inactivating mechanisms that target both AKT and interrelated proteins. Reprogramming of this altered circuitry by pharmacologic modulation of the AKT pathway represents a powerful strategy for rational cancer therapy. In this review, we summarize a large body of data, from many types of cancer, indicating that AKT activation is one of the most common molecular alterations in human malignancy. We also review mechanisms of activation of AKT kinases, examples of therapeutic modulation of the AKT pathway in animal models, and the current status of efforts to target molecular components of the AKT pathway for cancer therapy and, possibly, cancer prevention.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                August 2017
                03 August 2017
                1 August 2017
                : 8
                : 8
                : e2968
                Affiliations
                [1 ]Department of General Surgery, The Second Hospital of Dalian Medical University , Dalian, China
                [2 ]Department of Anesthesiology, The Second Hospital of Dalian Medical University , Dalian, China
                [3 ]College of Laboratory Medicine, Dalian Medical University , Dalian, China
                Author notes
                [* ]Department of General Surgery, The Second Hospital of Dalian Medical University , Dalian 116023 China. Tel: 84671291-5122; Fax: 186 411 846 721 30; E-mail: zyf0386@ 123456sina.com
                [* ]College of Laboratory Medicine, Dalian Medical University , Dalian, 116044, Liaoning Province, China. Tel/Fax: +86 411 86110386; E-mail: jiali0386@ 123456sina.com
                [4]

                These authors contributed equally to this work.

                Article
                cddis2017352
                10.1038/cddis.2017.352
                5596543
                28771224
                c8d62fea-4115-42b7-957f-fbc96c18f2c2
                Copyright © 2017 The Author(s)

                Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 04 March 2017
                : 31 May 2017
                : 01 June 2017
                Categories
                Original Article

                Cell biology
                Cell biology

                Comments

                Comment on this article