12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Home for Pancreatic Islet Transplants: The Bone Marrow

      article-commentary
      1 , 2 , 3 , 4 , 1 , 2 , 3 , 4 , 5
      Diabetes
      American Diabetes Association

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transplantation of pancreatic islets represents a clinical therapeutic option to preserve and/or restore β-cell function in patients with diabetes (1,2). The source of the islets is the patient’s own pancreas (autologous, islet autotransplantation [IAT]) when the goal is preserving pancreatic endocrine function in pediatric and adult individuals undergoing total pancreatectomy due to pancreatitis (3,4) or trauma (5,6). Recently, IAT has been also proposed for enucleable benign (7) and malignant (8) pancreatic neoplasms. Transplantation of deceased-donor (allogeneic) islets is performed for patients with brittle type 1 diabetes and hypoglycemia unawareness as islet transplant alone (ITA) if nonuremic and as simultaneous islet–kidney (SIK) or sequential islet after kidney (IAK) transplantation procedures if uremic (end-stage renal disease) requiring kidney transplantation. Allogeneic islets can be part of cluster organ transplantation (Table 1). In recognition of the excellent metabolic control obtained after islet transplantation even when exogenous insulin treatment is required, reimbursement has been approved in several countries (e.g., Australia, Canada, France, Italy, Switzerland, U.K., Sweden, and the Nordic Network). In the U.S., only IAT is currently reimbursed, while biological licensure by the U.S. Food and Drug Administration should be imminent after recent completion of the Clinical Islet Transplant Consortium registration trials (www.citisletstudy.org). TABLE 1 Indications for islet cell transplantation Since the 1970s, islets have been embolized into the hepatic portal system by a minimally invasive technique consisting of transhepatic cannulation of the portal vein under ultrasound and fluoroscopy guidance followed by sealing of the tract with thrombostatic treatment (2). Alternatively, in patients at risk for bleeding, the transplant is performed by cannulation of a tributary of the portal vein using open surgery (minilaparotomy) or laparoscopic approach. An instant blood-mediated inflammatory reaction occurring after intraportal islet infusion may activate the coagulation cascade and the endothelium of the hepatic sinusoids, triggering adhesion of platelets and leukocytes and generation of thrombi and ischemia, contributing to the loss of a conspicuous mass of transplanted tissue. Nonspecific inflammation generated at the time of transplant may heighten the intensity of subsequent adaptive immune responses. In organ transplantation, these responses are responsible for higher incidence of acute and chronic rejection episodes, and in type 1 diabetes they also promote the recurrence of autoimmunity. Other disadvantages of the hepatic site include the relatively hyperglycemic environment and the elevated concentration of immunosuppressants (first-pass) that are toxic to islets. Definition of extrahepatic transplantation sites is recognized as a research priority. Ongoing investigations (Table 2) aimed at identifying a microenvironment that could provide prompt engraftment and minimize early inflammation and islet cell death while achieving sustained function are of particular interest. Engraftment of islet grafts in several extrahepatic sites with or without bioengineering strategies has been demonstrated in experimental models (2,9–11), although clinical translation for some remains arguable (Table 2). An ideal new “home” for islet grafts should accommodate relatively large volumes of tissue (e.g., low purity, or pooled donor islet preparations, and/or retransplantation), rely on minimally invasive transplant procedures, and allow for noninvasive longitudinal monitoring and easy access for biopsy. Portal blood drainage may be preferable to reproduce physiological metabolic responses. Confinement and retrievability of the graft is desirable, particularly for bioengineering approaches to optimize the site. Extrahepatic sites already tested in humans include muscle (12,13) and peritoneal cavity (to accommodate large microencapsulated islets) (14,15). TABLE 2 Implantation sites for islet cell transplantation The new pilot study by Maffi et al. (16) in this issue supports the clinical feasibility and safety of intra-bone marrow (BM) islet transplantation. Four patients underwent total pancreatectomy and, as intrahepatic islet transplantation was contraindicated for anatomical or medical reasons, the autologous islet suspension (IAT) was injected via puncture of the iliac crest under local anesthesia (Fig. 1). Neither adverse events related to the transplant nor apparent alterations of hematopoiesis were observed. Successful intramarrow islet engraftment was documented in all patients as detectable fasting and simulated circulating C-peptide levels. Marrow biopsy and aspirate demonstrated physiologic microenvironment patterns. Well-preserved islet morphology, cytoarchitecture with normal distribution of endocrine cell subsets and vascular structures, and expression of transcription factors specific for endocrine precursors and mature β-cells were detected in collected specimens. Hypointense magnetic resonance imaging signal and calcifications detected at the transplant site possibly reflect microenvironment reactivity and remodeling worthy of further investigation. FIG. 1. Schematics of intra-BM islet transplantation and graft microenvironment. The advantages emerging from this study of the marrow over the liver are easy graft implantation and monitoring by obtaining adequate biopsies (unlike the case for intrahepatic islets that are broadly dispersed in a large parenchyma). Appealing features of the marrow microenvironment include its richness in hematopoietic, mesenchymal (stromal), and endothelial cell precursors that could contribute to tissue repair/remodeling and, in turn, promote islet engraftment (Fig. 1). Immunomodulatory properties of BM cell subsets might assist in reducing early inflammation and improving the survival of allogeneic islet grafts in patients with type 1 diabetes (17–19). In previous rodent studies, engraftment and function of syngeneic islets had superior results in the femoral BM than in the liver (20). However, in the present clinical study, C-peptide levels appeared lower for intra-BM grafts than for comparable patients receiving intrahepatic IAT (16). Species differences may account for the discrepancy in outcomes between rodent and human transplants. Also, the limited number and heterogeneity of the clinical cases does not allow for generalizations at this stage. The pilot trial is innovative as proof-of-concept that the BM is a viable clinical alternative to the intrahepatic site in cases in which the latter is contraindicated. However, application of the BM as gold standard for islet implantation is questionable at the present time. Besides lack of portal drainage and retrievability (limitations common to the liver), additional studies are needed to further the understanding of the features and potential of the BM site in humans, ascertaining the optimal islet mass needed to restore euglycemia, the possibility of infusing large islet volumes without compromising engraftment, the impact of immunotherapy on islet engraftment and function, and the long-term efficacy and safety of clinical intra-BM islet transplantation. Identification of a clinically relevant new home for islet grafts will likely contribute to achieving reproducibly successful biological replacement of β-cell function in insulin-requiring diabetes.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation.

          The long-term viability and function of transplanted encapsulated neonatal porcine islets was examined in a diabetic patient. A 41-yr-old Caucasian male with type 1 diabetes for 18 yr was given an intraperitoneal transplant of alginate-encapsulated porcine islets at the dose of 15,000 islet equivalents (IEQs)/kg bodyweight (total dose 1,305,000 IEQs) via laparoscopy. By 12 weeks following the transplant, his insulin dose was significantly reduced by 30% (P = 0.0001 by multiple regression tests) from 53 units daily prior to transplant. The insulin dose returned to the pre-transplant level at week 49. Improvement in glycaemic control continued as reflected by total glycated haemoglobin of 7.8% at 14 months from a pre-transplant level of 9.3%. Urinary porcine C-peptide peaked at 4 months (9.5 ng/ml) and remained detectable for 11 months (0.6 ng/ml). The patient was followed as part of a long-term microbiologic monitoring programme which subsequently showed no evidence of porcine viral or retroviral infection. At laparoscopy 9.5 yr after transplantation, abundant nodules were seen throughout the peritoneum. Biopsies of the nodules showed opacified capsules containing cell clusters that stained as live cells under fluorescence microscopy. Immunohistology noted sparse insulin and moderate glucagon staining cells. The retrieved capsules produced a small amount of insulin when placed in high glucose concentrations in vitro. An oral glucose tolerance test induced a small rise in serum of immuno-reactive insulin, identified as porcine by reversed phase high pressure liquid chromatography. This form of xenotransplantation treatment has the potential for sustained benefit in human type 1 diabetics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Long-Term Metabolic and Immunological Follow-Up of Nonimmunosuppressed Patients With Type 1 Diabetes Treated With Microencapsulated Islet Allografts

            OBJECTIVE To assess long-term metabolic and immunological follow-up of microencapsulated human islet allografts in nonimmunosuppressed patients with type 1 diabetes (T1DM). RESEARCH DESIGN AND METHODS Four nonimmunosuppressed patients, with long-standing T1DM, received intraperitoneal transplant (TX) of microencapsulated human islets. Anti-major histocompatibility complex (MHC) class I–II, GAD65, and islet cell antibodies were measured before and long term after TX. RESULTS All patients turned positive for serum C-peptide response, both in basal and after stimulation, throughout 3 years of posttransplant follow-up. Daily mean blood glucose, as well as HbA1c levels, significantly improved after TX, with daily exogenous insulin consumption declining in all cases and being discontinued, just transiently, only in patient 4. Anti-MHC class I–II and GAD65 antibodies all tested negative at 3 years after TX. CONCLUSIONS The grafts did not elicit any immune response, even in the cases where more than one preparation was transplanted, as a unique finding, compatible with encapsulation-driven “bioinvisibility” of the grafted islets. This result had never been achieved with the recipient’s general immunosuppression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Autologous Pancreatic Islet Transplantation in Human Bone Marrow

              The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being ideal. We recently have shown in mice that the bone marrow (BM) may be a valid alternative to the liver, and here we report a pilot study to test feasibility and safety of BM as a site for islet transplantation in humans. Four patients who developed diabetes after total pancreatectomy were candidates for the autologous transplantation of pancreatic islet. Because the patients had contraindications for intraportal infusion, islets were infused in the BM. In all recipients, islets engrafted successfully as shown by measurable posttransplantation C-peptide levels and histopathological evidence of insulin-producing cells or molecular markers of endocrine tissue in BM biopsy samples analyzed during follow-up. Thus far, we have recorded no adverse events related to the infusion procedure or the presence of islets in the BM. Islet function was sustained for the maximum follow-up of 944 days. The encouraging results of this pilot study provide new perspectives in identifying alternative sites for islet infusion in patients with type 1 diabetes. Moreover, this is the first unequivocal example of successful engraftment of endocrine tissue in the BM in humans.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                October 2013
                17 September 2013
                : 62
                : 10
                : 3333-3335
                Affiliations
                [1] 1Diabetes Research Institute, University of Miami, Miami, Florida
                [2] 2DeWitt-Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
                [3] 3Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
                [4] 4Department of Biomedical Engineering, University of Miami, Miami, Florida
                [5] 5Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida.
                Author notes
                Corresponding author: Camillo Ricordi, ricordi@ 123456miami.edu .
                Article
                1039
                10.2337/db13-1039
                3781445
                24065792
                c8deab2f-6a3f-4c4a-9016-d6071831e656
                © 2013 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                Page count
                Pages: 3
                Categories
                Commentary

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article