+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aquaporin 4: a player in cerebral edema and neuroinflammation

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Neuroinflammation is a common pathological event observed in many different brain diseases, frequently associated with blood brain barrier (BBB) dysfunction and followed by cerebral edema. Neuroinflammation is characterized with microglia activation and astrogliosis, which is a hypertrophy of the astrocytes. Astrocytes express aquaporin 4, the water channel protein, involved in water homeostasis and edema formation. Aside from its function in water homeostasis, recent studies started to show possible interrelations between aquaporin 4 and neuroinflammation. In this review the roles of aquaporin 4 in neuroinflammation associated with BBB disruption and cerebral edema will be discussed with recent studies in the field.

          Related collections

          Most cited references 67

          • Record: found
          • Abstract: found
          • Article: not found

          Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke.

          Cerebral edema contributes significantly to morbidity and death associated with many common neurological disorders. However, current treatment options are limited to hyperosmolar agents and surgical decompression, therapies introduced more than 70 years ago. Here we show that mice deficient in aquaporin-4 (AQP4), a glial membrane water channel, have much better survival than wild-type mice in a model of brain edema caused by acute water intoxication. Brain tissue water content and swelling of pericapillary astrocytic foot processes in AQP4-deficient mice were significantly reduced. In another model of brain edema, focal ischemic stroke produced by middle cerebral artery occlusion, AQP4-deficient mice had improved neurological outcome. Cerebral edema, as measured by percentage of hemispheric enlargement at 24 h, was decreased by 35% in AQP4-deficient mice. These results implicate a key role for AQP4 in modulating brain water transport, and suggest that AQP4 inhibition may provide a new therapeutic option for reducing brain edema in a wide variety of cerebral disorders.
            • Record: found
            • Abstract: found
            • Article: not found

            Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia.

            Regulation of the extracellular matrix by proteases and protease inhibitors is a fundamental biological process for normal growth, development and repair in the CNS. Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) are the major extracellular-degrading enzymes. Two other enzyme families, a disintegrin and metalloproteinase (ADAM), and the serine proteases, plasminogen/plasminogen activator (P/PA) system, are also involved in extracellular matrix degradation. Normally, the highly integrated action of these enzyme families remodels all of the components of the matrix and performs essential functions at the cell surface involved in signaling, cell survival, and cell death. During the inflammatory response induced in infection, autoimmune reactions and hypoxia/ischemia, abnormal expression and activation of these proteases lead to breakdown of the extracellular matrix, resulting in the opening of the blood-brain barrier (BBB), preventing normal cell signaling, and eventually leading to cell death. There are several key MMPs and ADAMs that have been implicated in neuroinflammation: gelatinases A and B (MMP-2 and -9), stromelysin-1 (MMP-3), membrane-type MMP (MT1-MMP or MMP-14), and tumor necrosis factor-alpha converting enzyme (TACE). In addition, TIMP-3, which is bound to the cell surface, promotes cell death and impedes angiogenesis. Inhibitors of metalloproteinases are available, but balancing the beneficial and detrimental effects of these agents remains a challenge.
              • Record: found
              • Abstract: found
              • Article: not found

              Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain.

              Reperfusion disrupts cerebral capillaries, causing cerebral edema and hemorrhage. Middle cerebral artery occlusion (MCAO) induces the matrix-degrading metalloproteinases, but their role in capillary injury after reperfusion is unknown. Matrix metalloproteinases (MMPs) and tissue inhibitors to metalloproteinases (TIMPs) modulate capillary permeability. Therefore, we measured blood-brain barrier (BBB) permeability, brain water and electrolytes, MMPs, and TIMPs at multiple times after reperfusion. Adult rats underwent MCAO for 2 hours by the suture method. Brain uptake of 14C-sucrose was measured from 3 hours to 14 days after reperfusion. Levels of MMPs and TIMPs were measured by zymography and reverse zymography, respectively, in contiguous tissues. Other rats had water and electrolytes measured at 3, 24, or 48 hours after reperfusion. Treatment with a synthetic MMP inhibitor, BB-1101, on BBB permeability and cerebral edema was studied. Brain sucrose uptake increased after 3 and 48 hours of reperfusion, with maximal opening at 48 hours and return to normal by 14 days. There was a correlation between the levels of gelatinase A at 3 hours and the sucrose uptake (P<0.05). Gelatinase A (MMP-2) was maximally increased at 5 days, and TIMP-2 was highest at 5 days. Gelatinase B and TIMP-1 were maximally elevated at 48 hours. The inhibitor of gelatinase B, TIMP-1, was also increased at 48 hours. Treatment with BB-1101 reduced BBB opening at 3 hours and brain edema at 24 hours, but neither was affected at 48 hours. The initial opening at 3 hours correlated with gelatinase A levels and was blocked by a synthetic MMP inhibitor. The delayed opening, which was associated with elevated levels of gelatinase B, failed to respond to the MMP inhibitor, suggesting different mechanisms of injury for the biphasic BBB injury.

                Author and article information

                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                27 December 2012
                : 9
                : 279
                [1 ]Departments of Physiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
                [2 ]Departments of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
                Copyright ©2012 Fukuda and Badaut; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



                aquaporin, astrocyte, blood brain barrier, stroke, traumatic brain injury, neuroinflammation


                Comment on this article