12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phonon bottleneck in graphene-based Josephson junctions at millikelvin temperatures

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We examine the nature of the transitions between the normal and the superconducting branches of superconductor-graphene-superconductor Josephson junctions. We attribute the hysteresis between the switching (superconducting to normal) and retrapping (normal to superconducting) transitions to electron overheating. In particular, we demonstrate that the retrapping current corresponds to the critical current at an elevated temperature, where the heating is caused by the retrapping current itself. The superconducting gap in the leads suppresses the hot electron outflow, allowing us to further study electron thermalization by phonons at low temperatures (\(T \lesssim 1\)K). The relationship between the applied power and the electron temperature was found to be \(P\propto T^3\), which we argue is consistent with cooling due to electron-phonon interactions.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Raman Fingerprint of Graphene

          Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphene's electronic structure is uniquely captured in its Raman spectrum that clearly evolves with increasing number of layers. Raman fingerprints for single-, bi- and few-layer graphene reflect changes in the electronic structure and electron-phonon interactions and allow unambiguous, high-throughput, non-destructive identification of graphene layers, which is critically lacking in this emerging research area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Disorder-Assisted Electron-Phonon Scattering and Cooling Pathways in Graphene

            We predict that graphene is a unique system where disorder-assisted scattering (supercollisions) dominates electron-lattice cooling over a wide range of temperatures, up to room temperature. This is so because for momentum-conserving electron-phonon scattering the energy transfer per collision is severely constrained due to a small Fermi surface size. The characteristic \(T^3\) temperature dependence and power-law cooling dynamics provide clear experimental signatures of this new cooling mechanism. The cooling rate can be changed by orders of magnitude by varying the amount of disorder which offers means for a variety of new applications that rely on hot-carrier transport.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Origin of Hysteresis in a Proximity Josephson Junction

              We investigate hysteresis in the transport properties of Superconductor - Normal metal - Superconductor (S-N-S) junctions at low temperatures by measuring directly the electron temperature in the normal metal. Our results demonstrate unambiguously that the hysteresis results from an increase of the normal metal electron temperature once the junction switches to the resistive state. In our geometry, the electron temperature increase is governed by the thermal resistance of the superconducting electrodes of the junction.
                Bookmark

                Author and article information

                Journal
                26 December 2012
                Article
                10.1103/PhysRevLett.111.027001
                1212.6297
                c8e72709-021c-4645-9615-a632be5a3d10

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                4 pages, 3 figures
                cond-mat.mes-hall

                Nanophysics
                Nanophysics

                Comments

                Comment on this article