16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90-min period, either an anti-VEGF neutralizing antibody (RB-222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB-222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB-222 was more effective than a 5 µg dose of the antibody. In addition, RB-222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB-222 significantly repressed VEGF expression as well as decreased MMP-2 and MMP-9 expression. However, it enhanced occludin and collagen-IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Functional assessments in the rodent stroke model

          Stroke is a common cause of permanent disability accompanied by devastating impairments for which there is a pressing need for effective treatment. Motor, sensory and cognitive deficits are common following stroke, yet treatment is limited. Along with histological measures, functional outcome in animal models has provided valuable insight to the biological basis and potential rehabilitation efforts of experimental stroke. Developing and using tests that have the ability to identify behavioral deficits is essential to expanding the development of translational therapies. The present aim of this paper is to review many of the current behavioral tests that assess functional outcome after stoke in rodent models. While there is no perfect test, there are many assessments that are sensitive to detecting the array of impairments, from global to modality specific, after stroke.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of angiogenesis in patients with cerebral ischemic stroke.

            Stroke is one of the most common causes of mortality and morbidity in the Western world. It results from the occlusion of a cerebral artery followed by severe disturbances in blood supply through microvessels to brain tissue. Despite an extensive literature its pathophysiology is poorly understood, and this has severely impeded the logical development of therapy. Brains were obtained from 10 patients aged 46 to 85 years with survival times of 5 to 92 days after their stroke. Infarcted areas and representative control tissues from the contralateral uninvolved brain hemisphere were collected. Microvessel density was measured microscopically. A total of 6520 microvessels were scored in 10,801 areas. The level of activation of the endothelial cells was studied by immunohistochemistry using three monoclonal antibodies, viz, E-9, raised against activated endothelial cells; IG11, recognizing vascular cell adhesion molecule-1; and anti-proliferating cell nuclear antigen. Angiogenic activity in tissue extracts was examined using an in vivo chicken chorioallantoic membrane assay. There was a statistically significant increase in the number of microvessels (Wilcoxon log-rank test; P < or = .01) in 9 of 10 infarcted brain tissues when compared with their contralateral normal hemisphere. In these patients the higher blood vessel counts correlated with longer survival, as ascertained by Spearman's p analysis (P < .02). The number of microvessels filled with blood cells was significantly lower in the infarcted hemispheres (P < .01). In contrast, statistically significant increased numbers of empty microvessels occurred in infarcted tissues compared with the contralateral hemisphere. Monoclonal antibody E-9 reacted weakly with normal-brain vascular endothelial cells; anti-proliferating cell nuclear antigen and IG11 were virtually negative. All three antibodies strongly stained the blood vessels of stroke tissues. The stroke tissues contained angiogenic activity, as shown by the induction of new blood vessels in a chorioallantoic membrane assay. We have shown that stroke causes active angiogenesis that is more developed in the penumbra. Further experiments are needed to determine if this angiogenesis has beneficial effect.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage.

              Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                December 2016
                29 November 2016
                29 November 2016
                : 15
                : 1
                : 57-64
                Affiliations
                [1 ]Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
                [2 ]Department of Ophthalmology, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
                [3 ]Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
                Author notes
                Correspondence to: Professor Yong-Li Li or Professor Chuan-Lu Jiang, Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150086, P.R. China, E-mail: liyongli9999@ 123456yeah.net , E-mail: jcl6688@ 123456163.com
                [*]

                Contributed equally

                Article
                mmr-15-01-0057
                10.3892/mmr.2016.5974
                5355683
                27909732
                c9046948-689a-4aad-a705-5a3c648bc747
                Copyright: © Zhang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 20 October 2015
                : 27 September 2016
                Categories
                Articles

                cerebral ischemia,vascular endothelial growth factor inhibition,matrix metalloproteinase,blood-brain barrier,brain edema

                Comments

                Comment on this article