Blog
About

23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tripterygium Glycosides Tablet Ameliorates Renal Tubulointerstitial Fibrosis via the Toll-Like Receptor 4/Nuclear Factor Kappa B Signaling Pathway in High-Fat Diet Fed and Streptozotocin-Induced Diabetic Rats

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tripterygium glycosides tablet (TGT) is a Chinese traditional medicine that has been shown to protect podocytes from injury and reduce the proteinuria. The aim of this study was to assess the effect of TGT on renal tubulointerstitial fibrosis and its potential mechanism in high-fat diet fed and STZ-induced diabetic rats. Rats were randomly divided into normal control rats (NC group), diabetic rats without drug treatment (DM group), and diabetic rats treated with TGT (1, 3, or 6 mg/kg/day, respectively) for 8 weeks. The results showed that 24 h proteinuria and urinary N-acetyl-glucosaminidase (NAG) in diabetic rats were decreased by TGT treatment without affecting blood glucose. Masson's trichrome stains showed that apparent renal tubulointerstitial fibrosis was found in DM group, which was ameliorated by TGT treatment. The expression of α-SMA was significantly decreased, accompanied by increased expression of E-cadherin in TGT-treated rats, but not in untreated DM rats. Further studies showed that TGT administration markedly reduced expression of TLR4, NF- κB, IL-1 β, and MCP-1 in TGT-treated diabetic rats. These results showed that TGT could ameliorate renal tubulointerstitial fibrosis, the mechanism which may be at least partly associated with the amelioration of EMT through suppression of the TLR4/NF- κB pathway.

          Related collections

          Most cited references 48

          • Record: found
          • Abstract: found
          • Article: not found

          Global estimates of the prevalence of diabetes for 2010 and 2030.

          We estimated the number of people worldwide with diabetes for the years 2010 and 2030. Studies from 91 countries were used to calculate age- and sex-specific diabetes prevalences, which were applied to national population estimates, to determine national diabetes prevalences for all 216 countries for 2010 and 2030. Studies were identified using Medline, and contact with all national and regional International Diabetes Federation offices. Studies were included if diabetes prevalence was assessed using a population-based methodology, and was based on World Health Organization or American Diabetes Association diagnostic criteria for at least three separate age-groups within the 20-79 year range. Self-report or registry data were used if blood glucose assessment was not available. The world prevalence of diabetes among adults (aged 20-79 years) will be 6.4%, affecting 285 million adults, in 2010, and will increase to 7.7%, and 439 million adults by 2030. Between 2010 and 2030, there will be a 69% increase in numbers of adults with diabetes in developing countries and a 20% increase in developed countries. These predictions, based on a larger number of studies than previous estimates, indicate a growing burden of diabetes, particularly in developing countries. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toll-like receptors.

            The innate immune system in drosophila and mammals senses the invasion of microorganisms using the family of Toll receptors, stimulation of which initiates a range of host defense mechanisms. In drosophila antimicrobial responses rely on two signaling pathways: the Toll pathway and the IMD pathway. In mammals there are at least 10 members of the Toll-like receptor (TLR) family that recognize specific components conserved among microorganisms. Activation of the TLRs leads not only to the induction of inflammatory responses but also to the development of antigen-specific adaptive immunity. The TLR-induced inflammatory response is dependent on a common signaling pathway that is mediated by the adaptor molecule MyD88. However, there is evidence for additional pathways that mediate TLR ligand-specific biological responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toll-like receptors: critical proteins linking innate and acquired immunity.

              Recognition of pathogens is mediated by a set of germline-encoded receptors that are referred to as pattern-recognition receptors (PRRs). These receptors recognize conserved molecular patterns (pathogen-associated molecular patterns), which are shared by large groups of microorganisms. Toll-like receptors (TLRs) function as the PRRs in mammals and play an essential role in the recognition of microbial components. The TLRs may also recognize endogenous ligands induced during the inflammatory response. Similar cytoplasmic domains allow TLRs to use the same signaling molecules used by the interleukin 1 receptors (IL-1Rs): these include MyD88, IL-1R--associated protein kinase and tumor necrosis factor receptor--activated factor 6. However, evidence is accumulating that the signaling pathways associated with each TLR are not identical and may, therefore, result in different biological responses.
                Bookmark

                Author and article information

                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi Publishing Corporation
                2314-6745
                2314-6753
                2015
                12 August 2015
                : 2015
                Affiliations
                2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
                Author notes

                Academic Editor: Jennifer L. Wilkinson-Berka

                Article
                10.1155/2015/390428
                4549548
                Copyright © 2015 Ze-jun Ma et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article

                Comments

                Comment on this article