12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Simvastatin Does Not Affect Nitric Oxide Generation Increased by Sesame Oil in Obese Zucker Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Current treatments for cardiovascular and obesity-associated diseases, such as statin therapy, may be associated with several side effects. Products from food sources with polyphenolic compounds may represent promising agents in the treatment of cardiovascular and metabolic diseases with minimal side effects. Thus, we aimed to study the effect of sesame oil and simvastatin treatment on plasma lipid profile, nitric oxide generation, and oxidative load in obese Zucker rats. 12-week-old male Zucker rats were divided into the control and sesame oil- (1.25 ml/kg/day) treated Zucker lean groups, the control and sesame oil (1.25 ml/kg/day), or simvastatin (15 mg/kg/day) together with sesame oil-treated Zucker fa/fa groups, n = 6 in each group. The treatment lasted for 6 weeks. Sesame oil composition and plasma lipid profile were analyzed. Nitric oxide synthase (NOS) activity, endothelial NOS (eNOS), phosphorylated eNOS, and inducible NOS (iNOS) protein expressions were determined in the left ventricle and aorta. Oxidative load, measured as conjugated diene (CD) and thiobarbituric acid reactive substance (TBARS) concentrations, was detected in the liver. Neither sesame oil nor cotreatment with simvastatin affected plasma lipid profile in Zucker fa/fa rats. Sesame oil and similarly cotreatment with simvastatin markedly increased NOS activity and phosphorylated eNOS protein expressions in the left ventricle and aorta of Zucker fa/fa rats. There were no changes in eNOS and iNOS protein expressions within the groups and tissues investigated. Hepatic CD concentration was higher in Zucker fa/fa comparing Zucker lean rats, and sesame oil treatment decreased it significantly. Interestingly, this decrease was not seen after cotreatment with simvastatin. In conclusion, phosphorylation of eNOS and decreased oxidative load may significantly contribute to increase in total NOS activity with potential beneficial properties. Interestingly, simvastatin did not affect NO generation already increased by sesame oil in obese Zucker rats.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The Definition and Prevalence of Obesity and Metabolic Syndrome.

          Increase in prevalence of obesity has become a worldwide major health problem in adults, as well as among children and adolescents. Furthermore, total adiposity and truncal subcutaneous fat accumulation during adolescence are positively and independently associated with atherosclerosis at adult ages. Centrally accumulation of body fat is associated with insulin resistance, whereas distribution of body fat in a peripheral pattern is metabolically less important. Obesity is associated with a large decrease in life expectancy. The effect of extreme obesity on mortality is greater among younger than older adults. In this respect, obesity is also associated with increased risk of several cancer types. However, up to 30% of obese patients are metabolically healthy with insulin sensitivity similar to healthy normal weight individuals, lower visceral fat content, and lower intima media thickness of the carotid artery than the majority of metabolically "unhealthy" obese patients.Abdominal obesity is the most frequently observed component of metabolic syndrome. The metabolic syndrome; clustering of abdominal obesity, dyslipidemia, hyperglycemia and hypertension, is a major public health challenge. The average prevalence of metabolic syndrome is 31%, and is associated with a two-fold increase in the risk of coronary heart disease, cerebrovascular disease, and a 1.5-fold increase in the risk of all-cause mortality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Automated inference of molecular mechanisms of disease from amino acid substitutions.

            Advances in high-throughput genotyping and next generation sequencing have generated a vast amount of human genetic variation data. Single nucleotide substitutions within protein coding regions are of particular importance owing to their potential to give rise to amino acid substitutions that affect protein structure and function which may ultimately lead to a disease state. Over the last decade, a number of computational methods have been developed to predict whether such amino acid substitutions result in an altered phenotype. Although these methods are useful in practice, and accurate for their intended purpose, they are not well suited for providing probabilistic estimates of the underlying disease mechanism. We have developed a new computational model, MutPred, that is based upon protein sequence, and which models changes of structural features and functional sites between wild-type and mutant sequences. These changes, expressed as probabilities of gain or loss of structure and function, can provide insight into the specific molecular mechanism responsible for the disease state. MutPred also builds on the established SIFT method but offers improved classification accuracy with respect to human disease mutations. Given conservative thresholds on the predicted disruption of molecular function, we propose that MutPred can generate accurate and reliable hypotheses on the molecular basis of disease for approximately 11% of known inherited disease-causing mutations. We also note that the proportion of changes of functionally relevant residues in the sets of cancer-associated somatic mutations is higher than for the inherited lesions in the Human Gene Mutation Database which are instead predicted to be characterized by disruptions of protein structure. http://mutdb.org/mutpred predrag@indiana.edu; smooney@buckinstitute.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiovascular consequences of metabolic syndrome.

              The metabolic syndrome (MetS) is defined as the concurrence of obesity-associated cardiovascular risk factors including abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension. Earlier conceptualizations of the MetS focused on insulin resistance as a core feature, and it is clearly coincident with the above list of features. Each component of the MetS is an independent risk factor for cardiovascular disease and the combination of these risk factors elevates rates and severity of cardiovascular disease, related to a spectrum of cardiovascular conditions including microvascular dysfunction, coronary atherosclerosis and calcification, cardiac dysfunction, myocardial infarction, and heart failure. While advances in understanding the etiology and consequences of this complex disorder have been made, the underlying pathophysiological mechanisms remain incompletely understood, and it is unclear how these concurrent risk factors conspire to produce the variety of obesity-associated adverse cardiovascular diseases. In this review, we highlight current knowledge regarding the pathophysiological consequences of obesity and the MetS on cardiovascular function and disease, including considerations of potential physiological and molecular mechanisms that may contribute to these adverse outcomes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2018
                30 August 2018
                : 2018
                : 5413423
                Affiliations
                Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia
                Author notes

                Academic Editor: Gokhan Zengin

                Author information
                http://orcid.org/0000-0003-0132-670X
                http://orcid.org/0000-0001-5476-2949
                Article
                10.1155/2018/5413423
                6136517
                30245774
                c9067cf7-acdd-40d0-b999-950f449a1c65
                Copyright © 2018 Martina Cebova et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 June 2018
                : 2 August 2018
                Funding
                Funded by: Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
                Award ID: 2/0195/15
                Award ID: 2/0137/16
                Award ID: 2/0170/17
                Award ID: 2/0165/15
                Funded by: Agentúra na Podporu Výskumu a Vývoja
                Award ID: APVV-14-0932
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article