23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dendritic Degeneration of Human Auditory Nerve Fibers and Its Impact on the Spiking Pattern Under Regular Conditions and During Cochlear Implant Stimulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to limitations of human in vivo studies, detailed computational models enable understanding the neural signaling in the degenerated auditory system and cochlear implants (CIs). Four human cochleae were used to quantify hearing levels depending on dendritic changes in diameter and myelination thickness from type I of the auditory nerve fibers (ANFs). Type I neurons transmit the auditory information as spiking pattern from the inner hair cells (IHCs) to the cochlear nucleus. The impact of dendrite diameter and degree of myelination on neural signal transmission was simulated for (1) synaptic excitation via IHCs and (2) stimulation from CI electrodes. An accurate three-dimensional human cochlear geometry, along with 30 auditory pathways, mimicked the CI environment. The excitation properties of electrical potential distribution induced by two CI were analyzed. Main findings: (1) The unimodal distribution of control dendrite diameters becomes multimodal for hearing loss cases; a group of thin dendrites with diameters between 0.3 and 1 μm with a peak at 0.5 μm appeared. (2) Postsynaptic currents from IHCs excite such thin dendrites easier and earlier than under control conditions. However, this advantage is lost as their conduction velocity decreases proportionally with the diameter and causes increased spike latency and jitter in soma and axon. Firing probability reduces through the soma passage due to the low intracellular current flow in thin dendrites during spiking. (3) Compared with dendrite diameter, variations in myelin thickness have a small impact on spiking performance. (4) Contrary to synaptic excitation, CIs cause several spike initiation sites in dendrite, soma region, and axon; moreover, fiber excitability reduces with fiber diameter. In a few cases, where weak stimuli elicit spikes of a target neuron (TN) in the axon, dendrite diameter reduction has no effect. However, in many cases, a spike in a TN is first initiated in the dendrite, and consequently, dendrite degeneration demands an increase in threshold currents. (5) Threshold currents of a TN and co-stimulation of degenerated ANFs in other frequency regions depend on the electrode position, including its distance to the outer wall, the cochlear turn, and the three-dimensional pathway of the TN.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients.

          To update a 15-year-old study of 800 postlinguistically deaf adult patients showing how duration of severe to profound hearing loss, age at cochlear implantation (CI), age at onset of severe to profound hearing loss, etiology and CI experience affected CI outcome. Retrospective multicenter study. Data from 2251 adult patients implanted since 2003 in 15 international centers were collected and speech scores in quiet were converted to percentile ranks to remove differences between centers. The negative effect of long duration of severe to profound hearing loss was less important in the new data than in 1996; the effects of age at CI and age at onset of severe to profound hearing loss were delayed until older ages; etiology had a smaller effect, and the effect of CI experience was greater with a steeper learning curve. Patients with longer durations of severe to profound hearing loss were less likely to improve with CI experience than patients with shorter duration of severe to profound hearing loss. The factors that were relevant in 1996 were still relevant in 2011, although their relative importance had changed. Relaxed patient selection criteria, improved clinical management of hearing loss, modifications of surgical practice, and improved devices may explain the differences. Copyright © 2012 S. Karger AG, Basel.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Primary Neural Degeneration in the Human Cochlea: Evidence for Hidden Hearing Loss in the Aging Ear

            The noise-induced and age-related loss of synaptic connections between auditory-nerve fibers and cochlear hair cells is well-established from histopathology in several mammalian species; however, its prevalence in humans, as inferred from electrophysiological measures, remains controversial. Here we look for cochlear neuropathy in a temporal-bone study of "normal-aging" humans, using autopsy material from 20 subjects aged 0-89 yrs, with no history of otologic disease. Cochleas were immunostained to allow accurate quantification of surviving hair cells in the organ Corti and peripheral axons of auditory-nerve fibers. Mean loss of outer hair cells was 30-40% throughout the audiometric frequency range (0.25-8.0 kHz) in subjects over 60 yrs, with even greater losses at both apical (low-frequency) and basal (high-frequency) ends. In contrast, mean inner hair cell loss across audiometric frequencies was rarely >15%, at any age. Neural loss greatly exceeded inner hair cell loss, with 7/11 subjects over 60 yrs showing >60% loss of peripheral axons re the youngest subjects, and with the age-related slope of axonal loss outstripping the age-related loss of inner hair cells by almost 3:1. The results suggest that a large number of auditory neurons in the aging ear are disconnected from their hair cell targets. This primary neural degeneration would not affect the audiogram, but likely contributes to age-related hearing impairment, especially in noisy environments. Thus, therapies designed to regrow peripheral axons could provide clinically meaningful improvement in the aged ear.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pre-, Per- and Postoperative Factors Affecting Performance of Postlinguistically Deaf Adults Using Cochlear Implants: A New Conceptual Model over Time

              Objective To test the influence of multiple factors on cochlear implant (CI) speech performance in quiet and in noise for postlinguistically deaf adults, and to design a model of predicted auditory performance with a CI as a function of the significant factors. Study Design Retrospective multi-centre study. Methods Data from 2251 patients implanted since 2003 in 15 international centres were collected. Speech scores in quiet and in noise were converted into percentile ranks to remove differences between centres. The influence of 15 pre-, per- and postoperative factors, such as the duration of moderate hearing loss (mHL), the surgical approach (cochleostomy or round window approach), the angle of insertion, the percentage of active electrodes, and the brand of device were tested. The usual factors, duration of profound HL (pHL), age, etiology, duration of CI experience, that are already known to have an influence, were included in the statistical analyses. Results The significant factors were: the pure tone average threshold of the better ear, the brand of device, the percentage of active electrodes, the use of hearing aids (HAs) during the period of pHL, and the duration of mHL. Conclusions A new model was designed showing a decrease of performance that started during the period of mHL, and became faster during the period of pHL. The use of bilateral HAs slowed down the related central reorganization that is the likely cause of the decreased performance.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                19 November 2020
                2020
                : 14
                : 599868
                Affiliations
                [1] 1Faculty of Mathematics and Geoinformation, Institute for Analysis and Scientific Computing, Vienna University of Technology , Vienna, Austria
                [2] 2Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck , Innsbruck, Austria
                Author notes

                Edited by: Hari S. Sharma, Uppsala University, Sweden

                Reviewed by: Robert Shepherd, The University of Melbourne, Australia; Aritra Kundu, The University of Texas at Austin, United States

                *Correspondence: Natalie Fischer, Natalie.Fischer@ 123456i-med.ac.at

                These authors have contributed equally to this work

                This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2020.599868
                7710996
                33328872
                c9095852-194e-409d-a424-59f97752b568
                Copyright © 2020 Heshmat, Sajedi, Johnson Chacko, Fischer, Schrott-Fischer and Rattay.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 September 2020
                : 22 October 2020
                Page count
                Figures: 10, Tables: 4, Equations: 0, References: 91, Pages: 19, Words: 0
                Funding
                Funded by: Austrian Science Fund 10.13039/501100002428
                Award ID: I4147-B
                Award ID: 29650
                Categories
                Neuroscience
                Original Research

                Neurosciences
                auditory nerve,degeneration,dendrite,cochlear implant,computational model,electrical stimulation,spike conductance,g-ratio

                Comments

                Comment on this article