22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Unravelling the link between global rubber price and tropical deforestation in Cambodia

      , , , ,
      Nature Plants
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tropical forests continue to undergo a rapid transformation. The expansion of rubber tree (Hevea brasiliensis) plantations has been reported as a major driver of forest loss, linked to a boom in market demand. Distant commodity markets have spurred a surge of large-scale economic land concessions granted throughout tropical Southeast Asia. Using satellite imagery, we show the impact of rubber tree plantations on Cambodian forest cover and analyse how annual forest-to-rubber conversion rates relate to global rubber prices from 2001 to 2015. We found that 23.5 ± 1.8% of national forest cover was cleared in this period, with 23.2 ± 3.6% of cleared forest converted to rubber plantations. Annual forest-to-rubber conversion rates closely correlated with global rubber prices, with a time lag of 8-9 months (Pearson's r = 0.93). Our results reveal a strong link between global commodity markets and tropical forest loss, particularly in countries with land policies geared towards rapid development.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Global land use change, economic globalization, and the looming land scarcity.

          A central challenge for sustainability is how to preserve forest ecosystems and the services that they provide us while enhancing food production. This challenge for developing countries confronts the force of economic globalization, which seeks cropland that is shrinking in availability and triggers deforestation. Four mechanisms-the displacement, rebound, cascade, and remittance effects-that are amplified by economic globalization accelerate land conversion. A few developing countries have managed a land use transition over the recent decades that simultaneously increased their forest cover and agricultural production. These countries have relied on various mixes of agricultural intensification, land use zoning, forest protection, increased reliance on imported food and wood products, the creation of off-farm jobs, foreign capital investments, and remittances. Sound policies and innovations can therefore reconcile forest preservation with food production. Globalization can be harnessed to increase land use efficiency rather than leading to uncontrolled land use expansion. To do so, land systems should be understood and modeled as open systems with large flows of goods, people, and capital that connect local land use with global-scale factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Primary forests are irreplaceable for sustaining tropical biodiversity.

            Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Deforestation driven by urban population growth and agricultural trade in the twenty-first century

                Bookmark

                Author and article information

                Journal
                Nature Plants
                Nature Plants
                Springer Nature
                2055-0278
                December 31 2018
                Article
                10.1038/s41477-018-0325-4
                30598534
                c911ba95-c068-42c3-8431-2c393ac87b00
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article