30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long Intergenic Noncoding RNA 00511 Acts as an Oncogene in Non–small-cell Lung Cancer by Binding to EZH2 and Suppressing p57

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long noncoding RNAs (lncRNAs) play crucial roles in carcinogenesis. However, the function and mechanism of lncRNAs in human non–small-cell lung cancer (NSCLC) are still remaining largely unknown. Long intergenic noncoding RNA 00511 (LINC00511) has been found to be upregulated and acts as an oncogene in breast cancer, but little is known about its expression pattern, biological function and underlying mechanism in NSCLC. Herein, we identified LINC00511 as an oncogenic lncRNA by driving tumorigenesis in NSCLC. We found LINC00511 was upregulated and associated with oncogenesis, tumor size, metastasis, and poor prognosis in NSCLC. Moreover, LINC00511 affected cell proliferation, invasiveness, metastasis, and apoptosis in multiple NSCLC cell lines. Mechanistically, LINC00511 bound histone methyltransferase enhancer of zeste homolog 2 ((EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2), a highly conserved protein complex that regulates gene expression by methylating lysine 27 on histone H3), and acted as a modular scaffold of EZH2/PRC2 complexes, coordinated their localization, and specified the histone modification pattern on the target genes, including p57, and consequently altered NSCLC cell biology. Thus, LINC00511 is mechanistically, functionally, and clinically oncogenic in NSCLC. Targeting LINC00511 and its pathway may be meaningful for treating patients with NSCLC.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Long noncoding RNA as modular scaffold of histone modification complexes.

          Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a.

            Expression of the INK4b/ARF/INK4a tumor suppressor locus in normal and cancerous cell growth is controlled by methylation of histone H3 at lysine 27 (H3K27me) as directed by the Polycomb group proteins. The antisense noncoding RNA ANRIL of the INK4b/ARF/INK4a locus is also important for expression of the protein-coding genes in cis, but its mechanism has remained elusive. Here we report that chromobox 7 (CBX7) within the polycomb repressive complex 1 binds to ANRIL, and both CBX7 and ANRIL are found at elevated levels in prostate cancer tissues. In concert with H3K27me recognition, binding to RNA contributes to CBX7 function, and disruption of either interaction impacts the ability of CBX7 to repress the INK4b/ARF/INK4a locus and control senescence. Structure-guided analysis reveals the molecular interplay between noncoding RNA and H3K27me as mediated by the conserved chromodomain. Our study suggests a mechanism by which noncoding RNA participates directly in epigenetic transcriptional repression. Copyright (c) 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF.

              We have previously detected a large germ-line deletion, which included the entire p15/CDKN2B-p16/CDKN2A-p14/ARF gene cluster, in the largest melanoma-neural system tumor (NST) syndrome family known to date by means of heterozygosity mapping based on microsatellite markers. Here, we used gene dose mapping with sequence-tagged site real-time PCR to locate the deletion end points, which were then precisely characterized by means of long-range PCR and nucleotide sequencing. The deletion was exactly 403,231 bp long and included the entire p15/CDKN2B, p16/CDKN2A, and p14/ARF genes. We then developed a simple and rapid assay to detect the junction fragment and to serve as a direct predictive DNA test for this large French family. We identified a new large antisense noncoding RNA (named ANRIL) within the 403-kb germ-line deletion, with a first exon located in the promoter of the p14/ARF gene and overlapping the two exons of p15/CDKN2B. Expression of ANRIL mainly coclustered with p14/ARF both in physiologic (various normal human tissues) and in pathologic conditions (human breast tumors). This study points to the existence of a new gene within the p15/CDKN2B-p16/CDKN2A-p14/ARF locus putatively involved in melanoma-NST syndrome families and in melanoma-prone families with no identified p16/CDKN2A mutations as well as in somatic tumors.
                Bookmark

                Author and article information

                Journal
                Mol Ther Nucleic Acids
                Mol Ther Nucleic Acids
                Molecular Therapy. Nucleic Acids
                Nature Publishing Group
                2162-2531
                November 2016
                15 November 2016
                1 November 2016
                : 5
                : 11
                : e385
                Affiliations
                [1 ]Department of Occupational and Environmental Health, School of Public Health, Wuhan University , Wuhan, P. R. China
                [2 ]Wuhan Hospital for the Prevention and Treatment of Occupational Diseases , Wuhan, P. R. China
                [3 ]Department of Oncology, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, P. R. China
                [4 ]Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, P. R. China
                [5 ]Department of Otorhinolaryngology-Head and Neck Surgery, ZhongNan Hospital, Wuhan University , Wuhan, P. R. China
                Author notes
                [* ]Department of Occupational and Environmental Health, School of Public Health, Wuhan University, No.115 Donghu Road, Wuchang District, Wuhan, China. E-mail: lodjlwhu@ 123456sina.com
                Article
                mtna201694
                10.1038/mtna.2016.94
                5155326
                27845772
                c92f8536-9d16-43f2-a7b0-c0949e85e2e8
                Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 27 July 2016
                : 09 September 2016
                Categories
                Original Article

                Molecular medicine
                enhancer of zeste homolog 2,long noncoding rna linc00511,p57,non–small-cell lung cancer,polycomb repressive complex 2,tumorigenesis

                Comments

                Comment on this article