43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective Effect of Glycyrrhizin, a Direct HMGB1 Inhibitor, on Focal Cerebral Ischemia/Reperfusion-Induced Inflammation, Oxidative Stress, and Apoptosis in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          Gl ycyrrhizin (GL) has been reported to protect against ischemia and reperfusion (I/R)-induced injury by inhibiting the cytokine activity of high mobility group box 1 (HMGB1). In the present study, the protective effects of GL against I/R injury, as well as the related molecular mechanisms, were investigated in rat brains.

          Methods

          Focal cerebral I/R injury was induced by intraluminal filamentous occlusion of the middle cerebral artery (MCA) in Male Sprague-Dawley rats. GL alone or GL and rHMGB1 were administered intravenously at the time of reperfusion. Serum levels of HMGB1 and inflammatory mediators were quantified via enzyme-linked immunosorbent assay (ELISA). Histopathological examination, immunofluorescence, RT-PCR and western blotting analyses were performed to investigate the protective and anti-apoptotic effects and related molecular mechanisms of GL against I/R injury in rat brains.

          Results

          Pre-treatment with GL significantly reduced infarct volume and improved the accompanying neurological deficits in locomotor function. The release of HMGB1 from the cerebral cortex into the serum was inhibited by GL administration. Moreover, pre-treatment with GL alleviated apoptotic injury resulting from cerebral I/R through the inhibition of cytochrome C release and caspase 3 activity. The expression levels of inflammation- and oxidative stress-related molecules including TNF-α, iNOS, IL-1β, and IL-6, which were over-expressed in I/R, were decreased by GL. P38 and P-JNK signalling were involved in this process. All of the protective effects of GL could be reversed by rHMGB1 administration.

          Conclusions

          GL has a protective effect on ischemia-reperfusion injury in rat brains through the inhibition of inflammation, oxidative stress and apoptotic injury by antagonising the cytokine activity of HMGB1.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          HMG-1 as a late mediator of endotoxin lethality in mice.

          Endotoxin, a constituent of Gram-negative bacteria, stimulates macrophages to release large quantities of tumor necrosis factor (TNF) and interleukin-1 (IL-1), which can precipitate tissue injury and lethal shock (endotoxemia). Antagonists of TNF and IL-1 have shown limited efficacy in clinical trials, possibly because these cytokines are early mediators in pathogenesis. Here a potential late mediator of lethality is identified and characterized in a mouse model. High mobility group-1 (HMG-1) protein was found to be released by cultured macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. Mice showed increased serum levels of HMG-1 from 8 to 32 hours after endotoxin exposure. Delayed administration of antibodies to HMG-1 attenuated endotoxin lethality in mice, and administration of HMG-1 itself was lethal. Septic patients who succumbed to infection had increased serum HMG-1 levels, suggesting that this protein warrants investigation as a therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion.

            High Mobility Group 1 protein (HMGB1) is a chromatin component that, when leaked out by necrotic cells, triggers inflammation. HMGB1 can also be secreted by activated monocytes and macrophages, and functions as a late mediator of inflammation. Secretion of a nuclear protein requires a tightly controlled relocation program. We show here that in all cells HMGB1 shuttles actively between the nucleus and cytoplasm. Monocytes and macrophages acetylate HMGB1 extensively upon activation with lipopolysaccharide; moreover, forced hyperacetylation of HMGB1 in resting macrophages causes its relocalization to the cytosol. Cytosolic HMGB1 is then concentrated by default into secretory lysosomes, and secreted when monocytic cells receive an appropriate second signal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The inflammatory response in myocardial infarction.

              One of the major therapeutic goals of modern cardiology is to design strategies aimed at minimizing myocardial necrosis and optimizing cardiac repair following myocardial infarction. However, a sound understanding of the biology is necessary before a specific intervention is pursued on a therapeutic basis. This review summarizes our current understanding of the cellular and molecular mechanisms regulating the inflammatory response following myocardial ischemia and reperfusion. Myocardial necrosis induces complement activation and free radical generation, triggering a cytokine cascade initiated by Tumor Necrosis Factor (TNF)-alpha release. If reperfusion of the infarcted area is initiated, it is attended by an intense inflammatory reaction. Interleukin (IL)-8 synthesis and C5a activation have a crucial role in recruiting neutrophils in the ischemic and reperfused myocardium. Neutrophil infiltration is regulated through a complex sequence of molecular steps involving the selectins and the integrins, which mediate leukocyte rolling and adhesion to the endothelium. Marginated neutrophils exert potent cytotoxic effects through the release of proteolytic enzymes and the adhesion with Intercellular Adhesion Molecule (ICAM)-1 expressing cardiomyocytes. Despite this potential injury, substantial evidence suggests that reperfusion enhances cardiac repair improving patient survival; this effect may be in part related to the inflammatory response. Monocyte Chemoattractant Protein (MCP)-1 is also markedly upregulated in the infarcted myocardium inducing recruitment of mononuclear cells in the injured areas. Monocyte-derived macrophages and mast cells may produce cytokines and growth factors necessary for fibroblast proliferation and neovascularization, leading to effective repair and scar formation. At this stage expression of inhibitory cytokines such as IL-10 may have a role in suppressing the acute inflammatory response and in regulating extracellular matrix metabolism. Fibroblasts in the healing scar undergo phenotypic changes expressing smooth muscle cell markers. Our previous review in this journal focused almost exclusively on reduction of the inflammatory injury. The current update is prompted by the potential therapeutic opportunity that the open vessel offers. By promoting more effective tissue repair, it may be possible to reduce the deleterious remodeling, that is the leading cause of heart failure and death. Elucidating the complex interactions and regulatory mechanisms responsible for cardiac repair may allow us to design effective inflammation-related interventions for the treatment of myocardial infarction.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                4 March 2014
                : 9
                : 3
                : e89450
                Affiliations
                [1 ]Department of Anaesthesiology, General Hospital of the People's Liberation Army, Chengdu, Sichuan, China
                [2 ]Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
                [3 ]Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
                University of Missouri, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GG LX HD. Performed the experiments: LY LH WW LC LY. Analyzed the data: GG LX HD. Contributed reagents/materials/analysis tools: LY LH WW LC LY. Wrote the paper: GG LX HD.

                Article
                PONE-D-13-44573
                10.1371/journal.pone.0089450
                3942385
                24594628
                c93b4675-5dc7-497e-bc61-dcb21325e2e3
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 October 2013
                : 20 January 2014
                Page count
                Pages: 10
                Funding
                This study was supported by the State Key Program of the National Natural Science Foundation of China (Grant NO. 110469), Sichuan Province and Chengdu military area command general hospital Awards Fund (2011YG-A06). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Model Organisms
                Animal Models
                Rat
                Molecular Cell Biology
                Signal Transduction
                Medicine
                Diagnostic Medicine
                Clinical Laboratory Sciences
                Drugs and Devices
                Pharmacodynamics
                Neurology
                Cerebrovascular Diseases
                Ischemic Stroke

                Uncategorized
                Uncategorized

                Comments

                Comment on this article