54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Weed Management in 2050: Perspectives on the Future of Weed Science

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The discipline of weed science is at a critical juncture. Decades of efficient chemical weed control have led to a rise in the number of herbicide-resistant weed populations, with few new herbicides with unique modes of action to counter this trend and often no economical alternatives to herbicides in large-acreage crops. At the same time, the world population is swelling, necessitating increased food production to feed an anticipated 9 billion people by the year 2050. Here, we consider these challenges along with emerging trends in technology and innovation that offer hope of providing sustainable weed management into the future. The emergence of natural product leads in discovery of new herbicides and biopesticides suggests that new modes of action can be discovered, while genetic engineering provides additional options for manipulating herbicide selectivity and creating entirely novel approaches to weed management. Advances in understanding plant pathogen interactions will contribute to developing new biological control agents, and insights into plant–plant interactions suggest that crops can be improved by manipulating their response to competition. Revolutions in computing power and automation have led to a nascent industry built on using machine vision and global positioning system information to distinguish weeds from crops and deliver precision weed control. These technologies open multiple possibilities for efficient weed management, whether through chemical or mechanical mechanisms. Information is also needed by growers to make good decisions, and will be delivered with unprecedented efficiency and specificity, potentially revolutionizing aspects of extension work. We consider that meeting the weed management needs of agriculture by 2050 and beyond is a challenge that requires commitment by funding agencies, researchers, and students to translate new technologies into durable weed management solutions. Integrating old and new weed management technologies into more diverse weed management systems based on a better understanding of weed biology and ecology can provide integrated weed management and resistance management strategies that will be more sustainable than the technologies that are now failing.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          The shade-avoidance syndrome: multiple signals and ecological consequences

            • Record: found
            • Abstract: found
            • Article: not found

            Why have no new herbicide modes of action appeared in recent years?

            Herbicides with new modes of action are badly needed to manage the evolution of resistance of weeds to existing herbicides. Yet no major new mode of action has been introduced to the market place for about 20 years. There are probably several reasons for this. New potential products may have remained dormant owing to concerns that glyphosate-resistant (GR) crops have reduced the market for a new herbicide. The capture of a large fraction of the herbicide market by glyphosate with GR crops led to significantly diminished herbicide discovery efforts. Some of the reduced herbicide discovery research was also due to company consolidations and the availability of more generic herbicides. Another problem might be that the best herbicide molecular target sites may have already been discovered. However, target sites that are not utilized, for which there are inhibitors that are highly effective at killing plants, suggests that this is not true. Results of modern methods of target site discovery (e.g. gene knockout methods) are mostly not public, but there is no evidence of good herbicides with new target sites coming from these approaches. In summary, there are several reasons for a long dry period for new herbicide target sites; however, the relative magnitude of each is unclear. The economic stimulus to the herbicide industry caused by the evolution of herbicide-resistant weeds, especially GR weeds, may result in one or more new modes of action becoming available in the not too distant future. Copyright © 2011 Society of Chemical Industry.
              • Record: found
              • Abstract: found
              • Article: not found

              Biological control of weeds.

              Classical biological control, i.e. the introduction and release of exotic insects, mites, or pathogens to give permanent control, is the predominant method in weed biocontrol. Inundative releases of predators and integrated pest management are less widely used. The United States, Australia, South Africa, Canada, and New Zealand use biocontrol the most. Weeds in natural ecosystems are increasingly becoming targets for biocontrol. Discussion continues on agent selection, but host-specificity testing is well developed and reliable. Post-release evaluation of impact is increasing, both on the target weed and on non-target plants. Control of aquatic weeds has been a notable success. Alien plant problems are increasing worldwide, and biocontrol offers the only safe, economic, and environmentally sustainable solution.

                Author and article information

                Journal
                applab
                Weed Science
                Weed Sci
                Cambridge University Press (CUP)
                1550-2759
                May 2018
                February 21 2018
                May 2018
                : 66
                : 03
                : 275-285
                Article
                10.1017/wsc.2017.78
                c93b7f38-3afd-40ce-9f4d-530baed1eac9
                © 2018
                History

                Comments

                Comment on this article

                Related Documents Log