136
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Amino Acids in HA and PB2 Critical for the Transmission of H5N1 Avian Influenza Viruses in a Mammalian Host

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since 2003, H5N1 influenza viruses have caused over 400 known cases of human infection with a mortality rate greater than 60%. Most of these cases resulted from direct contact with virus-contaminated poultry or poultry products. Although only limited human-to-human transmission has been reported to date, it is feared that efficient human-to-human transmission of H5N1 viruses has the potential to cause a pandemic of disastrous proportions. The genetic basis for H5N1 viral transmission among humans is largely unknown. In this study, we used guinea pigs as a mammalian model to study the transmission of six different H5N1 avian influenza viruses. We found that two viruses, A/duck/Guangxi/35/2001 (DKGX/35) and A/bar-headed goose/Qinghai/3/2005(BHGQH/05), were transmitted from inoculated animals to naïve contact animals. Our mutagenesis analysis revealed that the amino acid asparagine (Asn) at position 701 in the PB2 protein was a prerequisite for DKGX/35 transmission in guinea pigs. In addition, an amino acid change in the hemagglutinin (HA) protein (Thr160Ala), resulting in the loss of glycosylation at 158–160, was responsible for HA binding to sialylated glycans and was critical for H5N1 virus transmission in guinea pigs. These amino acids changes in PB2 and HA could serve as important molecular markers for assessing the pandemic potential of H5N1 field isolates.

          Author Summary

          H5N1 influenza viruses have caused over 400 human infections in 15 countries and continue to circulate in poultry and wild birds. Most human infections resulted from direct contact with virus-contaminated poultry or poultry products. It would be disastrous if H5N1 viruses acquired the ability to efficiently transmit among humans, because the mortality rate may exceed 60%. However, the genetic basis for transmission of H5N1 influenza viruses is largely unknown. Here, we demonstrate that the amino acid residue at 701 of PB2 is a prerequisite for transmission of H5N1 viruses in a mammalian guinea pig model. Interestingly, we found that the absence of glycosylation at residues 158–160 of the HA gene is pivotal for the H5N1 virus to bind to human-like receptors and to transmit in a mammal host. These findings are important for assessing the pandemic potential of H5N1 field isolates.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Avian flu: influenza virus receptors in the human airway.

          Although more than 100 people have been infected by H5N1 influenza A viruses, human-to-human transmission is rare. What are the molecular barriers limiting human-to-human transmission? Here we demonstrate an anatomical difference in the distribution in the human airway of the different binding molecules preferred by the avian and human influenza viruses. The respective molecules are sialic acid linked to galactose by an alpha-2,3 linkage (SAalpha2,3Gal) and by an alpha-2,6 linkage (SAalpha2,6Gal). Our findings may provide a rational explanation for why H5N1 viruses at present rarely infect and spread between humans although they can replicate efficiently in the lungs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Avian influenza A (H5N1) infection in humans.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses.

              M Hatta (2001)
              In 1997, an H5N1 influenza A virus was transmitted from birds to humans in Hong Kong, killing 6 of the 18 people infected. When mice were infected with the human isolates, two virulence groups became apparent. Using reverse genetics, we showed that a mutation at position 627 in the PB2 protein influenced the outcome of infection in mice. Moreover, high cleavability of the hemagglutinin glycoprotein was an essential requirement for lethal infection.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2009
                December 2009
                24 December 2009
                : 5
                : 12
                : e1000709
                Affiliations
                [1 ]Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
                [2 ]The 11th Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
                [3 ]The International Center for Medical Research and Treatment, Kobe University, Kobe, Japan
                [4 ]Division of Virology, Department of Microbiology and Immunology; International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
                [5 ]Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
                North Carolina State University, United States of America
                Author notes

                Conceived and designed the experiments: Z. Bu, H. Chen. Performed the experiments: Y. Gao, Y. Zhang, K. Shinya, G. Deng, Y. Jiang, Z. Li, Y. Guan, G. Tian, Y. Li, J. Shi, L. Liu, X. Zeng. Analyzed the data: Y. Gao, Y. Zhang, K. Shinya, Z. Bu, X. Xia, Y. Kawaoka, H. Chen. Wrote the paper: Y. Gao, Z. Bu, Y. Kawaoka, H. Chen.

                Article
                09-PLPA-RA-1481R3
                10.1371/journal.ppat.1000709
                2791199
                20041223
                c93f52d6-ea16-439e-93f1-f60a4e2d8940
                Gao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 August 2009
                : 24 November 2009
                Page count
                Pages: 11
                Categories
                Research Article
                Virology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article