40
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rapid adaptive responses to climate change in corals

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pivotal to projecting the fate of coral reefs is the capacity of reef-building corals to acclimatize and adapt to climate change. Transgenerational plasticity may enable some marine organisms to acclimatize over several generations and it has been hypothesized that epigenetic processes and microbial associations might facilitate adaptive responses. However, current evidence is equivocal and understanding of the underlying processes is limited. Here, we discuss prospects for observing transgenerational plasticity in corals and the mechanisms that could enable adaptive plasticity in the coral holobiont, including the potential role of epigenetics and coral-associated microbes. Well-designed and strictly controlled experiments are needed to distinguish transgenerational plasticity from other forms of plasticity, and to elucidate the underlying mechanisms and their relative importance compared with genetic adaptation.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          RNA-mediated epigenetic regulation of gene expression.

          Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of reef coral resistance to future climate change.

            Reef corals are highly sensitive to heat, yet populations resistant to climate change have recently been identified. To determine the mechanisms of temperature tolerance, we reciprocally transplanted corals between reef sites experiencing distinct temperature regimes and tested subsequent physiological and gene expression profiles. Local acclimatization and fixed effects, such as adaptation, contributed about equally to heat tolerance and are reflected in patterns of gene expression. In less than 2 years, acclimatization achieves the same heat tolerance that we would expect from strong natural selection over many generations for these long-lived organisms. Our results show both short-term acclimatory and longer-term adaptive acquisition of climate resistance. Adding these adaptive abilities to ecosystem models is likely to slow predictions of demise for coral reef ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic rescue to the rescue.

              Genetic rescue can increase the fitness of small, imperiled populations via immigration. A suite of studies from the past decade highlights the value of genetic rescue in increasing population fitness. Nonetheless, genetic rescue has not been widely applied to conserve many of the threatened populations that it could benefit. In this review, we highlight recent studies of genetic rescue and place it in the larger context of theoretical and empirical developments in evolutionary and conservation biology. We also propose directions to help shape future research on genetic rescue. Genetic rescue is a tool that can stem biodiversity loss more than has been appreciated, provides population resilience, and will become increasingly useful if integrated with molecular advances in population genomics.
                Bookmark

                Author and article information

                Journal
                Nature Climate Change
                Nature Climate change
                Springer Nature
                1758-678X
                1758-6798
                September 1 2017
                September 1 2017
                : 7
                : 9
                : 627-636
                Article
                10.1038/nclimate3374
                c93f68e6-8bef-4990-8a84-92090681b064
                © 2017
                History

                Comments

                Comment on this article