3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli

      , , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens.

          Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli O157:H7 are intestinal pathogens that profoundly damage the microvilli and subapical cytoskeleton of epithelial cells. Here we report finding in EPEC a 35-kbp locus containing several regions implicated in formation of these lesions. DNA probes throughout this locus hybridize to E. coli O157:H7 and other pathogens of three genera that cause similar lesions but do not hybridize to avirulent members of the same species. The EPEC locus and a different virulence locus of uropathogenic E. coli insert into the E. coli chromosome at the identical site and share highly similar sequences near the point of insertion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells.

            Enteropathogenic E. coli (EPEC) belongs to a group of bacterial pathogens that induce epithelial cell actin rearrangements resulting in pedestal formation beneath adherent bacteria. This requires the secretion of specific virulence proteins needed for signal transduction and intimate adherence. EPEC interaction induces tyrosine phosphorylation of a protein in the host membrane, Hp90, which is the receptor for the EPEC outer membrane protein, intimin. Hp90-intimin interaction is essential for intimate attachment and pedestal formation. Here, we demonstrate that Hp90 is actually a bacterial protein (Tir). Thus, this bacterial pathogen inserts its own receptor into mammalian cell surfaces, to which it then adheres to trigger additional host signaling events and actin nucleation. It is also tyrosine-phosphorylated upon transfer into the host cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS.

              In Pseudomonas aeruginosa, the production of many virulence factors and secondary metabolites is regulated in concert with cell density through quorum sensing. Two quorum-sensing regulons have been identified in which the LuxR homologues LasR and RhlR are activated by N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL) and N-butanoyl-L-homoserine lactone (BHL) respectively. The lasR and rhlR genes are linked to the luxl homologues lasl and rhll, which are responsible for synthesis of OdDHL and BHL, respectively. As lasRl and rhlRl are both involved in regulating synthesis of exoenzymes such as elastase, we sought to determine the nature of their interrelationship. By using lacZ transcriptional fusions in both homologous (P. aeruginosa) and heterologous (Escherichia coli) genetic backgrounds we provide evidence that (i) lasR is expressed constitutively throughout the growth cycle, (ii) rhlR expression is regulated by LasR/OdDHL, and (iii) that RhlR/BHL regulates rhll. We also show that expression of the stationary-phase sigma factor gene rpoS is abolished in a P. aeruginosa lasR mutant and in the pleiotropic BHL-negative mutant PANO67. Furthermore, our data reveal that kin E. coli, an rpoS-lacZ fusion is regulated directly by RhlR/BHL. Taken together, these results indicate that P. aeruginosa employs a multilayered hierarchical quorum-sensing cascade involving RhlR/BHL and LasR/OdDHL, interlinked via RpoS, to integrate the regulation of virulence determinants and secondary metabolites with adaptation and survival in the stationary phase.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 21 1999
                December 21 1999
                : 96
                : 26
                : 15196-15201
                Article
                10.1073/pnas.96.26.15196
                10611361
                c945ba7f-73c2-4fd7-8a62-318a8a337032
                © 1999
                History

                Comments

                Comment on this article