23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Downregulating SOCS3 with siRNA ameliorates insulin signaling and glucose metabolism in hepatocytes of IUGR rats with catch-up growth.

      Pediatric Research
      Animals, Down-Regulation, Fetal Growth Retardation, metabolism, Gluconeogenesis, genetics, Glucose, Hepatocytes, Insulin, Lipid Metabolism, RNA, Small Interfering, Rats, Signal Transduction, Suppressor of Cytokine Signaling Proteins

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Individuals with intrauterine growth retardation (IUGR) who demonstrate a catch-up in body weight are prone to insulin resistance. High expressions of suppressor of cytokine signaling 3 (SOCS3) are thought to aggravate insulin resistance. We hypothesized that downregulating SOCS3 expression via small interfering RNA (siRNA) might have beneficial effects on insulin-resistant hepatocytes of catch-up growth IUGR rats (CG-IUGRs). An IUGR rat model was employed via maternal nutritional restriction. After evaluating metabolic states of CG-IUGR offspring, effective SOCS3-specific siRNA (siSOCS3) was transfected into cultured hepatocytes using liposomes. mRNA levels of SOCS3, insulin receptor substrates (IRSs), phosphatidylinositol 3-kinase (PI3K), and Akt2, key gluconeogenesis genes, were assessed via real-time PCR. Protein expression and phosphorylation changes were evaluated via western blot. CG-IUGR hepatocytes showed increases in SOCS3 and gluconeogenic gene expressions, and decreases in IRS1 and PI3K expressions as compared with controls. After transfecting CG-IUGR hepatocytes with siSOCS3, protein levels of IRS1, PI3K, and phosphorylated Akt2 were higher as compared with those of untransfected CG-IUGR cells. Transcriptional suppression effects of gluconeogenesis genes were more obvious in siSOCS3-treated cells after insulin stimulation. Additional insights were provided to understand mechanisms of insulin resistance in CG-IUGR rats. Downregulating SOCS3 might improve insulin signaling transduction and ameliorate hepatic glucose metabolism in insulin-resistant CG-IUGR rats in vitro.

          Related collections

          Author and article information

          Comments

          Comment on this article