36
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiac fibroblasts mediate IL-17A–driven inflammatory dilated cardiomyopathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          IL-17A stimulates cardiac fibroblasts to produce inflammatory mediators critical for the recruitment and differentiation of myeloid cells during inflammatory dilated cardiomyopathy.

          Abstract

          Inflammatory dilated cardiomyopathy (DCMi) is a major cause of heart failure in individuals below the age of 40. We recently reported that IL-17A is required for the development of DCMi. We show a novel pathway connecting IL-17A, cardiac fibroblasts (CFs), GM-CSF, and heart-infiltrating myeloid cells with the pathogenesis of DCMi. Il17ra −/− mice were protected from DCMi, and this was associated with significantly diminished neutrophil and Ly6Chi monocyte/macrophage (MO/MΦ) cardiac infiltrates. Depletion of Ly6Chi MO/MΦ also protected mice from DCMi. Mechanistically, IL-17A stimulated CFs to produce key chemokines and cytokines that are critical downstream effectors in the recruitment and differentiation of myeloid cells. Moreover, IL-17A directs Ly6Chi MO/MΦ in trans toward a more proinflammatory phenotype via CF-derived GM-CSF. Collectively, this IL-17A–fibroblast–GM-CSF–MO/MΦ axis could provide a novel target for the treatment of DCMi and related inflammatory cardiac diseases.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Myocarditis.

          Myocarditis is an underdiagnosed cause of acute heart failure, sudden death, and chronic dilated cardiomyopathy. In developed countries, viral infections commonly cause myocarditis; however, in the developing world, rheumatic carditis, Trypanosoma cruzi, and bacterial infections such as diphtheria still contribute to the global burden of the disease. The short-term prognosis of acute myocarditis is usually good, but varies widely by cause. Those patients who initially recover might develop recurrent dilated cardiomyopathy and heart failure, sometimes years later. Because myocarditis presents with non-specific symptoms including chest pain, dyspnoea, and palpitations, it often mimics more common disorders such as coronary artery disease. In some patients, cardiac MRI and endomyocardial biopsy can help identify myocarditis, predict risk of cardiovascular events, and guide treatment. Finding effective therapies has been challenging because the pathogenesis of chronic dilated cardiomyopathy after viral myocarditis is complex and determined by host and viral genetics as well as environmental factors. Findings from recent clinical trials suggest that some patients with chronic inflammatory cardiomyopathy have a progressive clinical course despite standard medical care and might improve with a short course of immunosuppression. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury.

            Neutrophils respond to myocardial ischemia-reperfusion in a manner similar to the bacterial invasion of a host. The inflammatory-like response that follows the onset of reperfusion involves intense interactions with the coronary vascular endothelium, arterial wall, and cardiomyocytes in a very well-choreographed manner. Neutrophils have been implicated as primary and secondary mediators of lethal injury after reperfusion to coronary vascular endothelium and cardiomyocytes. The involvement of neutrophils in the pathogenesis of lethal myocardial injury has been inferred from (1) their presence and accumulation in reperfused myocardium in temporal agreement with injury induced, (2) the armamentarium of toxic agents such as oxidants and proteases that are released by neutrophils in reperfused myocardium, (3) responsivity to (recruitment by and/or activation by) inflammatory factors released by reperfused myocardium, and (4) inhibition of lethal post-ischemic myocyte or endothelial cell injury by strategies that interdict neutrophil interactions at any number of stages. However, whether neutrophils are directly involved in the pathogenesis of lethal reperfusion injury in the myocardium, are just pedestrian (first) responders to inflammatory signals released after the onset of reperfusion, or are important to an early but not clinically important phase of pathology are still points of controversy. As with the general area of myocardial protection itself, the failure to reproduce the salubrious effects of anti-neutrophil therapeutic strategies and to successfully translate these strategies into clinical practice has not only fueled the debate, but has jeopardized the further pursuit of myocardial protection therapeutics to improve post-ischemic outcomes. This review will describe the molecular responses of neutrophils to ischemia-reperfusion, discuss the cellular and tissue damage inflicted either directly or indirectly by these white cells, and discuss the physiological impact of interdiction of neutrophil-mediated interactions with myocardial cells at various levels on lethal post-ischemic injury. In addition, it will discuss the arguments for and against the involvement of neutrophils in responses to ischemia-reperfusion in experimental models, and the failure to translate experimentally successful therapy into clinical practice.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Myocarditis. A histopathologic definition and classification.

                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                30 June 2014
                : 211
                : 7
                : 1449-1464
                Affiliations
                [1 ]W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health , [2 ]Department of Pathology , and [3 ]Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
                [4 ]Department of Parasitology, US Naval Medical Research Unit Six (NAMRU-6), Lima 34031, Peru
                [5 ]Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
                Author notes
                CORRESPONDENCE Daniela Čiháková: dcihako1@ 123456jhmi.edu
                Article
                20132126
                10.1084/jem.20132126
                4076595
                24935258
                c94b2b28-399c-48a8-a067-e9a5396bb4df
                © 2014 Wu et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 8 October 2013
                : 12 May 2014
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article