25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Visualizing the Central Nervous System: Imaging Tools for Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are autoimmune central nervous system conditions with increasing incidence and prevalence. While MS is the most frequent inflammatory CNS disorder in young adults, NMOSD is a rare disease, that is pathogenetically distinct from MS, and accounts for approximately 1% of demyelinating disorders, with the relative proportion within the demyelinating CNS diseases varying widely among different races and regions. Most immunomodulatory drugs used in MS are inefficacious or even harmful in NMOSD, emphasizing the need for a timely and accurate diagnosis and distinction from MS. Despite distinct immunopathology and differences in disease course and severity there might be considerable overlap in clinical and imaging findings, posing a diagnostic challenge for managing neurologists. Differential diagnosis is facilitated by positive serology for AQP4-antibodies (AQP4-ab) in NMOSD, but might be difficult in seronegative cases. Imaging of the brain, optic nerve, retina and spinal cord is of paramount importance when managing patients with autoimmune CNS conditions. Once a diagnosis has been established, imaging techniques are often deployed at regular intervals over the disease course as surrogate measures for disease activity and progression and to surveil treatment effects. While the application of some imaging modalities for monitoring of disease course was established decades ago in MS, the situation is unclear in NMOSD where work on longitudinal imaging findings and their association with clinical disability is scant. Moreover, as long-term disability is mostly attack-related in NMOSD and does not stem from insidious progression as in MS, regular follow-up imaging might not be useful in the absence of clinical events. However, with accumulating evidence for covert tissue alteration in NMOSD and with the advent of approved immunotherapies the role of imaging in the management of NMOSD may be reconsidered. By contrast, MS management still faces the challenge of implementing imaging techniques that are capable of monitoring progressive tissue loss in clinical trials and cohort studies into treatment algorithms for individual patients. This article reviews the current status of imaging research in MS and NMOSD with an emphasis on emerging modalities that have the potential to be implemented in clinical practice.

          Related collections

          Most cited references237

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple sclerosis - a review

          Multiple sclerosis (MS) is the commonest non-traumatic disabling disease to affect young adults. The incidence of MS is increasing worldwide, together with the socioeconomic impact of the disease. The underlying cause of MS and mechanisms behind this increase remain opaque, although complex gene-environment interactions almost certainly play a significant role. The epidemiology of MS indicates that low serum levels of vitamin D, smoking, childhood obesity and infection with the Epstein-Barr virus are likely to play a role in disease development. Changes in diagnostic methods and criteria mean that people with MS can be diagnosed increasingly early in their disease trajectory. Alongside this, treatments for MS have increased exponentially in number, efficacy and risk. There is now the possibility of a diagnosis of 'pre-symptomatic MS' being made; as a result potentially preventive strategies could be studied. In this comprehensive review, MS epidemiology, potential aetiological factors and pathology are discussed, before moving on to clinical aspects of MS diagnosis and management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MOG encephalomyelitis: international recommendations on diagnosis and antibody testing

            Over the past few years, new-generation cell-based assays have demonstrated a robust association of autoantibodies to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis and brainstem encephalitis, as well as with acute disseminated encephalomyelitis (ADEM)-like presentations. Most experts now consider MOG-IgG-associated encephalomyelitis (MOG-EM) a disease entity in its own right, immunopathogenetically distinct from both classic multiple sclerosis (MS) and aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorders (NMOSD). Owing to a substantial overlap in clinicoradiological presentation, MOG-EM was often unwittingly misdiagnosed as MS in the past. Accordingly, increasing numbers of patients with suspected or established MS are currently being tested for MOG-IgG. However, screening of large unselected cohorts for rare biomarkers can significantly reduce the positive predictive value of a test. To lessen the hazard of overdiagnosing MOG-EM, which may lead to inappropriate treatment, more selective criteria for MOG-IgG testing are urgently needed. In this paper, we propose indications for MOG-IgG testing based on expert consensus. In addition, we give a list of conditions atypical for MOG-EM (“red flags”) that should prompt physicians to challenge a positive MOG-IgG test result. Finally, we provide recommendations regarding assay methodology, specimen sampling and data interpretation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients

              Background The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity. Objective To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus. Methods Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3%). Results Seropositive patients were found to be predominantly female (p 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome. Conclusion This study provides an overview of the clinical and paraclinical features of NMOSD in Caucasians and demonstrates a number of distinct disease characteristics in seropositive and seronegative patients.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                17 June 2020
                2020
                : 11
                : 450
                Affiliations
                [1] 1Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
                [2] 2NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
                [3] 3Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
                [4] 4Berlin Institute of Health , Berlin, Germany
                Author notes

                Edited by: Fabienne Brilot, University of Sydney, Australia

                Reviewed by: Izumi Kawachi, Niigata University, Japan; Ho Jin Kim, National Cancer Center, South Korea

                *Correspondence: Friedemann Paul friedemann.paul@ 123456charite.de

                This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2020.00450
                7311777
                32625158
                c94def74-f67d-4a57-81e4-a909a6ecc23d
                Copyright © 2020 Kuchling and Paul.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 November 2019
                : 28 April 2020
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 307, Pages: 21, Words: 18192
                Categories
                Neurology
                Review

                Neurology
                multiple sclerosis,neuromyelitis optica spectrum disorders (nmosd),magnetic resonance imaging,optical coherence tomography,neuroimaging

                Comments

                Comment on this article