18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      603. Identification of a Carbapenemase-Producing, Extensively Drug-Resistant Klebsiella pneumoniae Isolate Carrying a blaNDM-1-Bearing, Hypervirulent Plasmid, United States 2017

      abstract

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The recent discovery of carbapenemase-producing hypervirulent Klebsiella pneumoniae (CP-HvKP) has signaled the convergence of multidrug resistance and pathogenicity, with the potential for increased mortality. While previous studies of CP-HvKP isolates revealed that most carried carbapenemase genes and hypervirulence elements on separate plasmids, a 2018 report from China confirmed that both could be harbored on a single, hybrid carbapenemase-hypervirulent plasmid. As part of a project sequencing isolates carrying multiple carbapenemase genes identified through CDC’s Antibiotic Resistance Laboratory Network (AR Lab Network), we discovered a bla NDM-1 -bearing hypervirulent plasmid found in a KPC- and NDM-positive K. pneumoniae from the United States.

          Methods

          Antimicrobial susceptibility testing (AST) was performed by reference broth microdilution against 23 agents. Whole-genome sequencing (WGS) was performed on Illumina MiSeq and PacBio RS II platforms.

          Results

          AST results indicated the isolate was extensively drug-resistant, as it was non-susceptible to at least one agent in all but two drug classes; it was susceptible to only tigecycline and tetracycline. Analysis of WGS data showed the isolate was ST11, the same sequence type that caused a fatal outbreak of CP-HvKP in China in 2016. The genome included two plasmids. The smaller one (129kbp) carried seven antibiotic resistance (AR) genes, including the carbapenemase gene bla KPC-2 . The larger plasmid (354kbp) harbored 11 AR genes, including the metallo-β-lactamase gene bla NDM-1 , as well as virulence factors iucABCD/iutA, peg-344, rmpA, and rmpA2, which comprise four of the five genes previously identified as predictors of hypervirulence in K. pneumoniae.

          Conclusion

          This is the first report of a hybrid carbapenemase-hypervirulent plasmid in the United States. The presence of both blaNDM-1 and hypervirulence elements on the same plasmid suggests that the CP-Hv pathotype could spread rapidly through horizontal transfer. This discovery demonstrates the critical role of genomic characterization of emerging resistance and virulence phenotypes by the AR Lab Network as part of US containment efforts.

          Disclosures

          All authors: No reported disclosures.

          Related collections

          Author and article information

          Journal
          Open Forum Infect Dis
          Open Forum Infect Dis
          ofid
          Open Forum Infectious Diseases
          Oxford University Press (US )
          2328-8957
          October 2019
          23 October 2019
          23 October 2019
          : 6
          : Suppl 2 , IDWeek 2019 Abstracts
          : S282-S283
          Affiliations
          [1 ] CDC , Atlanta, Georgia
          [2 ] Centers for Disease Control and Prevention , Atlanta, Georgia
          [3 ] Eagle Medical Services , Atlanta, Georgia
          Article
          ofz360.672
          10.1093/ofid/ofz360.672
          6810911
          c964a171-04cb-44f8-8f8f-ec9b2afee4da
          © The Author(s) 2019. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

          This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

          History
          Page count
          Pages: 2
          Categories
          Abstracts
          Poster Abstracts

          Comments

          Comment on this article