11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated Analysis of miRNA and mRNA Expression Profiles Reveals Functional miRNA-Targets in Development Testes of Small Tail Han Sheep

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small Tail Han Sheep is a highly valued local breed in China because of their precocity, perennial estrus, and high fecundity. The average annual lambing rate of ewes is as high as 180–270%, the semen of ram has characteristics of high yield, high density, and good motility. To reveal the key miRNAs and miRNA-targets underlying testis development and spermatogenesis in male Small Tail Han Sheep, integrated analysis of miRNA and mRNA expression profiles in 2-, 6-, and 12-month-old testes was performed by RNA-seq technology and bioinformatics methods. The results showed that total of 153 known sheep miRNAs and 2712 novel miRNAs were obtained in 2-,6 - and 12-month-old Small Tail Han Sheep testes; 5, 1, and 4 differentially expressed (DE) known sheep miRNAs, and 132, 105, and 24 DE novel miRNAs were identified in 2- vs. 6-, 6- vs. 12-, and 2- vs. 12-month-old testes, respectively. We combined miRNA results of this study and the mRNA results obtained in our previous study to predict the target mRNAs of DE known sheep miRNAs; 131, 10, and 15 target mRNAs of DE known sheep miRNAs and 76, 1, and 11 DE miRNA–targets were identified in the three groups, respectively. GO and KEGG analyses showed that: in 2- vs. 6-month-olds, the target genes of DE known sheep miRNAs were involved in 100 biological processes and 11 signaling pathways; in 6- vs. 12-month-olds, the target genes of DE known sheep miRNAs were involved in 4 biological processes; and in 2- vs. 12-month-olds, the target genes of DE known sheep miRNAs were involved in 17 biological processes and 4 signaling pathways. Three miR–target regulatory networks were constructed based on these DE miRNA–targets. The key miRNA-Targets involved in testis development and spermatogenesis were screened. 6 known sheep miRNAs and 6 novel miRNAs were selected to validate the accuracy of miRNA sequencing data by qRT-PCR. The binding sites of oar-miR-379-5p with WNT8A was validated by a dual luciferase reporter gene detection system.

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          A random variance model for detection of differential gene expression in small microarray experiments.

          Microarray techniques provide a valuable way of characterizing the molecular nature of disease. Unfortunately expense and limited specimen availability often lead to studies with small sample sizes. This makes accurate estimation of variability difficult, since variance estimates made on a gene by gene basis will have few degrees of freedom, and the assumption that all genes share equal variance is unlikely to be true. We propose a model by which the within gene variances are drawn from an inverse gamma distribution, whose parameters are estimated across all genes. This results in a test statistic that is a minor variation of those used in standard linear models. We demonstrate that the model assumptions are valid on experimental data, and that the model has more power than standard tests to pick up large changes in expression, while not increasing the rate of false positives. This method is incorporated into BRB-ArrayTools version 3.0 (http://linus.nci.nih.gov/BRB-ArrayTools.html). ftp://linus.nci.nih.gov/pub/techreport/RVM_supplement.pdf
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs and spermatogenesis.

            In mammals, male gametes are produced inside the testis by spermatogenesis, which has three phases: mitotic proliferation of spermatogonia, meiosis of spermatocytes, and haploid differentiation of spermatids. The genome of male germ cells is actively transcribed to produce phase-specific gene expression patterns. Male germ cells have a complex transcriptome. In addition to protein-coding messenger RNAs, many noncoding RNAs, including microRNAs (miRNAs), are produced. The miRNAs are important regulators of gene expression. They function mainly post-transcriptionally to control the stability or translation of their target messenger RNAs. The miRNAs are expressed in a cell-specific manner during spermatogenesis to participate in the control of each step of male germ cell differentiation. Genetically modified mouse models have demonstrated the importance of miRNA pathways for normal spermatogenesis, and functional studies have been designed to dissect the roles of specific miRNAs in distinct cell types. Clinical studies have exploited the well-defined expression profiles of miRNAs, and human spermatozoal or seminal plasma miRNAs have been explored as potential biomarkers for male factor infertility. This review article discusses the current findings that support the central role of miRNAs in the regulation of spermatogenesis and male fertility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Solexa Sequencing of Novel and Differentially Expressed MicroRNAs in Testicular and Ovarian Tissues in Holstein Cattle

              The posttranscriptional gene regulation mediated by microRNA plays an important role in the development and function of male and female reproductive organs and germ cells in mammals, including cattle. In the present study, we identified novel and differentially expressed miRNAs in the testis and ovary in Holstein cattle by combining the Solexa sequencing with bioinformatics. In total 100 and 104 novel pre-miRNAs were identified in testicular and ovarian tissues, encoding 122 and 136 mature miRNAs, respectively. Of these, 6 miRNAs appear to be bovine-specific. A total of 246 known miRNAs were co-expressed in the testicular and ovarian tissues. Of the known miRNAs, twenty-one testis-specific and nine ovary-specific (1-23 reads) were found. Approximately 30.5% of the known bovine miRNAs in this study were found to have >2-fold differential expression within the two respective reproductive organ systems. The putative miRNA target genes of miRNAs were involved in pathways associated with reproductive physiology. Both known and novel tissue-specific miRNAs are expressed by Real-time quantitative PCR analysis in dairy cattle. This study expands the number of miRNAs known to be expressed in cattle. The patterns of miRNAs expression differed significantly between the bovine testicular and ovarian tissues, which provide important information on sex differences in miRNA expression. Diverse miRNAs may play an important regulatory role in the development of the reproductive organs in Holstein cattle.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                17 December 2018
                February 2019
                : 9
                : 2
                : 523-533
                Affiliations
                [* ]College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
                []College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
                Author notes
                [1 ]Corresponding authors: Yang Chen, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China, E-mail: 13844862285@ 123456189.cn . Huaizhi Jiang, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China, E-mail: sheepandgoatgbr@ 123456126.com
                Article
                GGG_200947
                10.1534/g3.118.200947
                6385976
                30559255
                c977a599-44e3-49f1-83ca-4db40f102bc3
                Copyright © 2019 Bai et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 November 2018
                : 11 December 2018
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 56, Pages: 11
                Categories
                Investigations

                Genetics
                small tail han sheep,testis development,spermatogenesis,mirnas,mrnas
                Genetics
                small tail han sheep, testis development, spermatogenesis, mirnas, mrnas

                Comments

                Comment on this article