37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intraflagellar transport balances continuous turnover of outer doublet microtubules : implications for flagellar length control

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A central question in cell biology is how cells determine the size of their organelles. Flagellar length control is a convenient system for studying organelle size regulation. Mechanistic models proposed for flagellar length regulation have been constrained by the assumption that flagella are static structures once they are assembled. However, recent work has shown that flagella are dynamic and are constantly turning over. We have determined that this turnover occurs at the flagellar tips, and that the assembly portion of the turnover is mediated by intraflagellar transport (IFT). Blocking IFT inhibits the incorporation of tubulin at the flagellar tips and causes the flagella to resorb. These results lead to a simple steady-state model for flagellar length regulation by which a balance of assembly and disassembly can effectively regulate flagellar length.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A motility in the eukaryotic flagellum unrelated to flagellar beating.

            We report a motility in the flagella of the green alga Chlamydomonas that is unrelated to dynein-based flagellar beating. This motility, referred to as intraflagellar transport, was observed as the rapid bidirectional movement of granule-like particles along the length of the flagella. Intraflagellar transport could be experimentally separated from other, previously reported, nonbeat flagellar motilities. EM of flagella showed groups of nonvesicular, lollipop-shaped structures positioned between the outer doublet microtubules and the flagellar membrane. Movement of these complexes along the length of the flagella may be responsible for intraflagellar transport.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FLAGELLAR ELONGATION AND SHORTENING IN CHLAMYDOMONAS

              Flagella can be removed from the biflagellate Chlamydomonas and the cells begin to regenerate flagella almost immediately by deceleratory kinetics. Under usual conditions of deflagellation, more than 98% of all flagella are removed. Under less drastic conditions, cells can be selected in which one flagellum is removed and the other left intact. When only one of the two flagella is amputated, the intact flagellum shortens by linear kinetics while the amputated one regenerates. The two flagella attain an equal intermediate length and then approach their initial length at the same rate. A concentration of cycloheximide which inhibits protein synthesis permits less than one-third of each flagellum to form when both flagella are amputated. When only one is amputated in cycloheximide, shortening proceeds normally and the degree of elongation in the amputated flagellum is greater than if both were amputated in the presence of cycloheximide. The shortening process is therefore independent of protein synthesis, and the protein from the shortening flagellum probably enters the pool of precursors available for flagellar formation. Partial regeneration of flagella occurs in concentrations of cycloheximide inhibitory to protein synthesis suggesting that some flagellar precursors are present. Cycloheximide and flagellar pulse-labeling studies indicate that precursor is used during the first part of elongation, is resynthesized at mid-elongation, and approaches its original level as the flagella reach their initial length. Colchicine completely blocks regeneration without affecting protein synthesis, and extended exposure of deflagellated cells to colchicine increases the amount of flagellar growth upon transfer to cycloheximide. When colchicine is applied to cells with only one flagellum removed, shortening continues normally but regeneration is blocked. Therefore, colchicine can be used to separate the processes of shortening and elongation. Radioautographic studies of the growth zone of Chlamydomonas flagella corroborate previous findings that assembly is occurring at the distal end (tip growth) of the organelle.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                29 October 2001
                : 155
                : 3
                : 405-414
                Affiliations
                Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
                Author notes

                Address correspondence to Wallace Marshall, KBT310 MCDB Dept., Yale University, New Haven, CT 06520-8103. Tel.: (203) 432-3473. Fax: (203) 432-6161. E-mail: wallace.marshall@ 123456yale.edu

                Article
                0106141
                10.1083/jcb.200106141
                2150833
                11684707
                c986b88c-2f53-46f0-b627-c2a3c0c03022
                Copyright © 2001, The Rockefeller University Press
                History
                : 26 June 2001
                : 23 August 2001
                : 20 September 2001
                Categories
                Article

                Cell biology
                flagella; tubulin; chlamydomonas; kinesin; intraflagellar transport
                Cell biology
                flagella; tubulin; chlamydomonas; kinesin; intraflagellar transport

                Comments

                Comment on this article