Blog
About

1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cytochromes c Constitute a Layer of Protection against Nitric Oxide but Not Nitrite.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nitric oxide (NO) is a radical gas that reacts with various biological molecules in complex ways to inhibit growth as a bacteriostatic agent. NO is nearly ubiquitous because it can be generated both biotically and abiotically. To protect the cell from NO damage, bacteria have evolved many strategies, with the production of detoxifying enzymatic systems being the most efficient. Here, we report that c-type cytochromes (cytochromes c) constitute a primary NO protection system in Shewanella oneidensis, a Gram-negative environmental bacterium renowned for respiratory versatility due to its high cytochrome c content. By using mutants producing cytochromes c at varying levels, we found that the content of these proteins is inversely correlated with the growth inhibition imposed by NO, whereas the effect of each individual cytochrome c is negligible. This NO-protecting system has no effect on nitrite inhibition. In the absence of cytochromes c, other NO targets and protective proteins, such as NnrS, emerge to show physiological influences during the NO stress. We further demonstrate that cytochromes c also play a similar role in Escherichia coli, albeit only modestly. Our data thus identify the in vivo function of an important group of proteins in alleviating NO stress.IMPORTANCE It is widely accepted that the antibacterial effects of nitrite are attributable to nitric oxide (NO) formation, suggesting a correlation of bacterial susceptibilities to these two chemicals. However, compared to E. coli, S. oneidensis is highly sensitive to nitrite but resistant to NO, implying the presence of robust NO-protective systems. Here, we show that c-type cytochromes (cytochromes c) play a main role in protecting S. oneidensis against damages from NO but not from nitrite. In their absence, impacts of proteins that promote NO tolerance and that are targets of NO inhibition become evident. Our data thus reveal the specific activity of cytochromes c in alleviating the stress caused by NO but not nitrite.

          Related collections

          Author and article information

          Journal
          Appl. Environ. Microbiol.
          Applied and environmental microbiology
          American Society for Microbiology
          1098-5336
          0099-2240
          September 01 2018
          : 84
          : 17
          Affiliations
          [1 ] Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
          [2 ] Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China haichung@zju.edu.cn.
          Article
          AEM.01255-18
          10.1128/AEM.01255-18
          6102973
          29934335

          Comments

          Comment on this article