12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced Probiotic Potential of Lactobacillus reuteri When Delivered as a Biofilm on Dextranomer Microspheres That Contain Beneficial Cargo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As with all orally consumed probiotics, the Gram-positive bacterium Lactobacillus reuteri encounters numerous challenges as it transits through the gastrointestinal tract of the host, including low pH, effectors of the host immune system, as well as competition with commensal and pathogenic bacteria, all of which can greatly reduce the availability of live bacteria for therapeutic purposes. Recently we showed that L. reuteri, when adhered in the form of a biofilm to a semi-permeable biocompatible dextranomer microsphere, reduces the incidence of necrotizing enterocolitis by 50% in a well-defined animal model following delivery of a single prophylactic dose. Herein, using the same semi-permeable microspheres, we showed that providing compounds beneficial to L. reuteri as diffusible cargo within the microsphere lumen resulted in further advantageous effects including glucosyltransferase-dependent bacterial adherence to the microsphere surface, resistance of bound bacteria against acidic conditions, enhanced adherence of L. reuteri to human intestinal epithelial cells in vitro, and facilitated production of the antimicrobial compound reuterin and the anti-inflammatory molecule histamine. These data support continued development of this novel probiotic formulation as an adaptable and effective means for targeted delivery of cargo beneficial to the probiotic bacterium.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Quantification of biofilm structures by the novel computer program COMSTAT.

          The structural organization of four microbial communities was analysed by a novel computer program, COMSTAT, which comprises ten features for quantifying three-dimensional biofilm image stacks. Monospecies biofilms of each of the four bacteria, Pseudomonas: putida, P. aureofaciens, P. fluorescens and P. aeruginosa, tagged with the green fluorescent protein (GFP) were grown in flow chambers with a defined minimal medium as substrate. Analysis by the COMSTAT program of four variables describing biofilm structure - mean thickness, roughness, substratum coverage and surface to volume ratio - showed that the four Pseudomonas: strains represent different modes of biofilm growth. P. putida had a unique developmental pattern starting with single cells on the substratum growing into micro-colonies, which were eventually succeeded by long filaments and elongated cell clusters. P. aeruginosa colonized the entire substratum, and formed flat, uniform biofilms. P. aureofaciens resembled P. aeruginosa, but had a stronger tendency to form micro-colonies. Finally, the biofilm structures of P. fluorescens had a phenotype intermediate between those of P. putida and P. aureofaciens. Analysis of biofilms of P. aureofaciens growing on 0.03 mM, 0.1 mM or 0.5 mM citrate minimal media showed that mean biofilm thickness increased with increasing citrate concentration. Moreover, biofilm roughness increased with lower citrate concentrations, whereas surface to volume ratio increased with higher citrate concentrations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Commensal bacteria protect against food allergen sensitization.

            Environmentally induced alterations in the commensal microbiota have been implicated in the increasing prevalence of food allergy. We show here that sensitization to a food allergen is increased in mice that have been treated with antibiotics or are devoid of a commensal microbiota. By selectively colonizing gnotobiotic mice, we demonstrate that the allergy-protective capacity is conferred by a Clostridia-containing microbiota. Microarray analysis of intestinal epithelial cells from gnotobiotic mice revealed a previously unidentified mechanism by which Clostridia regulate innate lymphoid cell function and intestinal epithelial permeability to protect against allergen sensitization. Our findings will inform the development of novel approaches to prevent or treat food allergy based on modulating the composition of the intestinal microbiota.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease.

              Antibiotic-associated diarrhea (AAD) is a common complication of most antibiotics and Clostridium difficile disease (CDD), which also is incited by antibiotics, is a leading cause of nosocomial outbreaks of diarrhea and colitis. The use of probiotics for these two related diseases remains controversial. To compare the efficacy of probiotics for the prevention of AAD and the treatment of CDD based on the published randomized, controlled clinical trials. PubMed, Medline, Google Scholar, NIH registry of clinical trials, metaRegister, and Cochrane Central Register of Controlled Trials were searched from 1977 to 2005, unrestricted by language. Secondary searches of reference lists, authors, reviews, commentaries, associated diseases, books, and meeting abstracts. Trials were included in which specific probiotics given to either prevent or treat the diseases of interest. Trials were required to be randomized, controlled, blinded efficacy trials in humans published in peer-reviewed journals. Trials that were excluded were pre-clinical, safety, Phase 1 studies in volunteers, reviews, duplicate reports, trials of unspecified probiotics, trials of prebiotics, not the disease being studied, or inconsistent outcome measures. Thirty-one of 180 screened studies (totally 3,164 subjects) met the inclusion and exclusion criteria. One reviewer identified studies and abstracted data on sample size, population characteristics, treatments, and outcomes. From 25 randomized controlled trials (RCTs), probiotics significantly reduced the relative risk of AAD (RR = 0.43, 95% CI 0.31, 0.58, p < 0.001). From six randomized trials, probiotics had significant efficacy for CDD (RR = 0.59, 95% CI 0.41, 0.85, p = 0.005). A variety of different types of probiotics show promise as effective therapies for these two diseases. Using meta-analyses, three types of probiotics (Saccharomyces boulardii, Lactobacillus rhamnosus GG, and probiotic mixtures) significantly reduced the development of antibiotic-associated diarrhea. Only S. boulardii was effective for CDD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                27 March 2017
                2017
                : 8
                : 489
                Affiliations
                [1] 1Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital Columbus, OH, USA
                [2] 2Wexner Medical Center, Institute for Behavioral Medicine Research, The Ohio State University Columbus, OH, USA
                Author notes

                Edited by: Rebeca Martin, Centre de Recherches de Jouy-en-Josas (INRA), France

                Reviewed by: Michael Gänzle, University of Alberta, Canada; Shu-Wei Marcia Su, Pennsylvania State University, USA

                *Correspondence: Steven D. Goodman steven.goodman@ 123456nationwidechildrens.org

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.00489
                5366311
                28396655
                c9acc12b-a42f-4ff3-94a2-23d29ad9bc16
                Copyright © 2017 Navarro, Mashburn-Warren, Bakaletz, Bailey and Goodman.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 November 2016
                : 09 March 2017
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 74, Pages: 15, Words: 12393
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                lactobacillus reuteri,microsphere,reuterin,glucosyltransferase,maltose,dextranomer

                Comments

                Comment on this article