271
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancing the Efficacy of Drug-loaded Nanocarriers against Brain Tumors by Targeted Radiation Therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioblastoma multiforme (GBM) is a common, usually lethal disease with a median survival of only ~15 months. It has proven resistant in clinical trials to chemotherapeutic agents such as paclitaxel that are highly effective in vitro, presumably because of impaired drug delivery across the tumor's blood-brain barrier (BBB). In an effort to increase paclitaxel delivery across the tumor BBB, we linked the drug to a novel filomicelle nanocarrier made with biodegradable poly(ethylene-glycol)-block-poly(ε-caprolactone-r-D,L-lactide) and used precisely collimated radiation therapy (RT) to disrupt the tumor BBB's permeability in an orthotopic mouse model of GBM. Using a non-invasive bioluminescent imaging technique to assess tumor burden and response to therapy in our model, we demonstrated that the drug-loaded nanocarrier (DLN) alone was ineffective against stereotactically implanted intracranial tumors yet was highly effective against GBM cells in culture and in tumors implanted into the flanks of mice. When targeted cranial RT was used to modulate the tumor BBB, the paclitaxel-loaded nanocarriers became effective against the intracranial tumors. Focused cranial RT improved DLN delivery into the intracranial tumors, significantly improving therapeutic outcomes. Tumor growth was delayed or halted, and survival was extended by &gt;50% (p<0.05) compared to the results obtained with either RT or the DLN alone. Combinations of RT and chemotherapeutic agents linked to nanocarriers would appear to be an area for future investigations that could enhance outcomes in the treatment of human GBM.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer.

          Brain metastases of breast cancer appear to be increasing in incidence, confer significant morbidity, and threaten to compromise gains made in systemic chemotherapy. The blood-tumor barrier (BTB) is compromised in many brain metastases; however, the extent to which this influences chemotherapeutic delivery and efficacy is unknown. Herein, we answer this question by measuring BTB passive integrity, chemotherapeutic drug uptake, and anticancer efficacy in vivo in two breast cancer models that metastasize preferentially to brain. Experimental brain metastasis drug uptake and BTB permeability were simultaneously measured using novel fluorescent and phosphorescent imaging techniques in immune-compromised mice. Drug-induced apoptosis and vascular characteristics were assessed using immunofluorescent microscopy. Analysis of over 2,000 brain metastases from two models (human 231-BR-Her2 and murine 4T1-BR5) showed partial BTB permeability compromise in greater than 89% of lesions, varying in magnitude within and between metastases. Brain metastasis uptake of ¹⁴C-paclitaxel and ¹⁴C-doxorubicin was generally greater than normal brain but less than 15% of that of other tissues or peripheral metastases, and only reached cytotoxic concentrations in a small subset (∼10%) of the most permeable metastases. Neither drug significantly decreased the experimental brain metastatic ability of 231-BR-Her2 tumor cells. BTB permeability was associated with vascular remodeling and correlated with overexpression of the pericyte protein desmin. This work shows that the BTB remains a significant impediment to standard chemotherapeutic delivery and efficacy in experimental brain metastases of breast cancer. New brain permeable drugs will be needed. Evidence is presented for vascular remodeling in BTB permeability alterations. ©2010 AACR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The blood-brain barrier and cancer: transporters, treatment, and Trojan horses.

            Despite scientific advances in understanding the causes and treatment of human malignancy, a persistent challenge facing basic and clinical investigators is how to adequately treat primary and metastatic brain tumors. The blood-brain barrier is a physiologic obstruction to the delivery of systemic chemotherapy to the brain parenchyma and central nervous system (CNS). A number of physiologic properties make the endothelium in the CNS distinct from the vasculature found in the periphery. Recent evidence has shown that a critical aspect of this barrier is composed of xenobiotic transporters which extrude substrates from the brain into the cerebrospinal fluid and systemic circulation. These transporters also extrude drugs and toxins if they gain entry into the cytoplasm of brain endothelial cells before they enter the brain. This review highlights the properties of the blood-brain barrier, including the location, function, and relative importance of the drug transporters that maintain this barrier. Primary and metastatic brain malignancy can compromise this barrier, allowing some access of chemotherapy treatment to reach the tumor. The responsiveness of brain tumors to systemic treatment found in past clinical research is discussed, as are possible explanations as to why CNS tumors are nonetheless able to evade therapy. Finally, strategies to overcome this barrier and better deliver chemotherapy into CNS tumors are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strategies to advance translational research into brain barriers.

              There is a paucity of therapies for most neurological disorders--from rare lysosomal storage diseases to major public health concerns such as stroke and Alzheimer's disease. Advances in the targeting of drugs to the CNS are essential for the future success of neurotherapeutics; however, the delivery of many potentially therapeutic and diagnostic compounds to specific areas of the brain is restricted by the blood-brain barrier, the blood-CSF barrier, or other specialised CNS barriers. These brain barriers are now recognised as a major obstacle to the treatment of most brain disorders. The challenge to deliver therapies to the CNS is formidable, and the solution will require concerted international efforts among academia, government, and industry. At a recent meeting of expert panels, essential and high-priority recommendations to propel brain barrier research forward in six topical areas were developed and these recommendations are presented here.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                January 2013
                23 December 2013
                : 4
                : 1
                : 64-79
                Affiliations
                1 Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
                2 NanoBio-Polymers Laboratory, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
                Author notes
                Correspondence to: Jay F. Dorsey, JayD@ 123456uphs.upenn.edu
                Article
                10.18632/oncotarget.777
                3702208
                23296073
                c9da207f-26ae-4e5d-a1a9-998a31975eb7
                Copyright: © 2013 Baumann et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 12 December 2012
                : 21 December 2012
                Categories
                Research Paper

                Oncology & Radiotherapy
                nanocarrier,glioblastoma multiforme,brain tumors,chemotherapy,radiation therapy

                Comments

                Comment on this article