4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recreating Tumour Complexity in a Dish: Organoid Models to Study Liver Cancer Cells and their Extracellular Environment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Primary liver cancer, consisting predominantly of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), remains one of the most lethal malignancies worldwide. This high malignancy is related to the complex and dynamic interactions between tumour cells, stromal cells and the extracellular environment. Novel in vitro models that can recapitulate the tumour are essential in increasing our understanding of liver cancer. Herein, primary liver cancer-derived organoids have opened up new avenues due to their patient-specificity, self-organizing ability and potential recapitulation of many of the tumour properties. Organoids are solely of epithelial origin, but incorporation into co-culture models can enable the investigation of the cellular component of the tumour microenvironment. However, the extracellular component also plays a vital role in cancer progression and representation is lacking within current in vitro models. In this review, organoid technology is discussed in the context of liver cancer models through comparisons to other cell culture systems. In addition, the role of the tumour extracellular environment in primary liver cancer will be highlighted with an emphasis on its importance in in vitro modelling. Converging novel organoid-based models with models incorporating the native tumour microenvironment could lead to experimental models that can better recapitulate liver tumours in vivo.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression.

          Tumors are like new organs and are made of multiple cell types and components. The tumor competes with the normal microenvironment to overcome antitumorigenic pressures. Before that battle is won, the tumor may exist within the organ unnoticed by the host, referred to as 'occult cancer'. We review how normal tissue homeostasis and architecture inhibit progression of cancer and how changes in the microenvironment can shift the balance of these signals to the procancerous state. We also include a discussion of how this information is being tailored for clinical use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Basal cells as stem cells of the mouse trachea and human airway epithelium.

            The pseudostratified epithelium of the mouse trachea and human airways contains a population of basal cells expressing Trp-63 (p63) and cytokeratins 5 (Krt5) and Krt14. Using a KRT5-CreER(T2) transgenic mouse line for lineage tracing, we show that basal cells generate differentiated cells during postnatal growth and in the adult during both steady state and epithelial repair. We have fractionated mouse basal cells by FACS and identified 627 genes preferentially expressed in a basal subpopulation vs. non-BCs. Analysis reveals potential mechanisms regulating basal cells and allows comparison with other epithelial stem cells. To study basal cell behaviors, we describe a simple in vitro clonal sphere-forming assay in which mouse basal cells self-renew and generate luminal cells, including differentiated ciliated cells, in the absence of stroma. The transcriptional profile identified 2 cell-surface markers, ITGA6 and NGFR, which can be used in combination to purify human lung basal cells by FACS. Like those from the mouse trachea, human airway basal cells both self-renew and generate luminal daughters in the sphere-forming assay.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human Primary Liver Cancer -derived Organoid Cultures for disease modelling and drug screening

              Human liver cancer research currently lacks in vitro models that faithfully recapitulate the pathophysiology of the original tumour. We recently described a novel, near-physiological organoid culture system, where primary human healthy liver cells form long-term expanding organoids that retain liver tissue function and genetic stability. Here, we extend this culture system to the propagation of primary liver cancer (PLC) organoids from three of the most common PLC subtypes: hepatocellular carcinoma (HCC), cholangiocarcinoma (CC) and combined HCC/CC (CHC) tumours. PLC-derived organoid cultures preserve the histological architecture, gene expression and genomic landscape of the original tumour, allowing discrimination between different tumour tissues and subtypes, even after long term expansion in culture in the same medium conditions. Xenograft studies demonstrate that the tumourogenic potential, histological features and metastatic properties of PLC-derived organoids are preserved in vivo. PLC-derived organoids are amenable for biomarker identification and drug screening testing and lead to the identification of the ERK inhibitor SCH772984 as a potential therapeutic agent for primary liver cancer. We thus demonstrate the wide-ranging biomedical utilities of PLC-derived organoid models in furthering the understanding of liver cancer biology and in developing personalized medicine approaches for the disease.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                01 November 2019
                November 2019
                : 11
                : 11
                : 1706
                Affiliations
                Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; g.vantienderen@ 123456erasmusmc.nl (G.S.v.T.); b.grootkoerkamp@ 123456erasmusmc.nl (B.G.K.); j.ijzermans@ 123456erasmusmc.nl (J.N.M.I.); l.vanderlaan@ 123456erasmusmc.nl (L.J.W.v.d.L.)
                Author notes
                [†]

                Both authors share senior authorship.

                Author information
                https://orcid.org/0000-0002-0651-5334
                https://orcid.org/0000-0001-9908-6673
                Article
                cancers-11-01706
                10.3390/cancers11111706
                6896153
                31683901
                c9efbf0e-7a4a-4536-ada4-691f124d4cd0
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 September 2019
                : 31 October 2019
                Categories
                Review

                tumour organoids,primary liver cancer,extracellular matrix,disease modelling

                Comments

                Comment on this article