5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The DROOPING LEAF ( DR) gene encoding GDSL esterase is involved in silica deposition in rice ( Oryza sativa L.)

      research-article
      1 , 2 , 3 , 1 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leaf morphology is one of the most important agronomic traits in rice breeding because of its contribution to crop yield. The drooping leaf ( dr) mutant was developed from the Ilpum rice cultivar by ethyl methanesulfonate (EMS) mutagenesis. Compared with the wild type, dr plants exhibited drooping leaves accompanied by a small midrib, short panicle, and reduced plant height. The phenotype of the dr plant was caused by a mutation within a single recessive gene on chromosome 2, dr (LOC_Os02g15230), which encodes a GDSL esterase. Analysis of wild-type and dr sequences revealed that the dr allele carried a single nucleotide substitution, glycine to aspartic acid. RNAi targeted to LOC_Os02g15230 produced same phenotypes to the dr mutation, confirming LOC_Os02g15230 as the dr gene. Microscopic observations and plant nutrient analysis of SiO 2 revealed that silica was less abundant in dr leaves than in wild-type leaves. This study suggests that the dr gene is involved in the regulation of silica deposition and that disruption of silica processes lead to drooping leaf phenotypes.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Silicon uptake and accumulation in higher plants.

          Silicon (Si) accumulation differs greatly between plant species because of differences in Si uptake by the roots. Recently, a gene encoding a Si uptake transporter in rice, a typical Si-accumulating plant, was isolated. The beneficial effects of Si are mainly associated with its high deposition in plant tissues, enhancing their strength and rigidity. However, Si might play an active role in enhancing host resistance to plant diseases by stimulating defense reaction mechanisms. Because many plants are not able to accumulate Si at high enough levels to be beneficial, genetically manipulating the Si uptake capacity of the root might help plants to accumulate more Si and, hence, improve their ability to overcome biotic and abiotic stresses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The anomaly of silicon in plant biology.

            E. Epstein (1994)
            Silicon is the second most abundant element in soils, the mineral substrate for most of the world's plant life. The soil water, or the "soil solution," contains silicon, mainly as silicic acid, H4SiO4, at 0.1-0.6 mM--concentrations on the order of those of potassium, calcium, and other major plant nutrients, and well in excess of those of phosphate. Silicon is readily absorbed so that terrestrial plants contain it in appreciable concentrations, ranging from a fraction of 1% of the dry matter to several percent, and in some plants to 10% or even higher. In spite of this prominence of silicon as a mineral constituent of plants, it is not counted among the elements defined as "essential," or nutrients, for any terrestrial higher plants except members of the Equisitaceae. For that reason it is not included in the formulation of any of the commonly used nutrient solutions. The plant physiologist's solution-cultured plants are thus anomalous, containing only what silicon is derived as a contaminant of their environment. Ample evidence is presented that silicon, when readily available to plants, plays a large role in their growth, mineral nutrition, mechanical strength, and resistance to fungal diseases, herbivory, and adverse chemical conditions of the medium. Plants grown in conventional nutrient solutions are thus to an extent experimental artifacts. Omission of silicon from solution cultures may lead to distorted results in experiments on inorganic plant nutrition, growth and development, and responses to environmental stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GDSL family of serine esterases/lipases.

              GDSL esterases and lipases are hydrolytic enzymes with multifunctional properties such as broad substrate specificity and regiospecificity. They have potential for use in the hydrolysis and synthesis of important ester compounds of pharmaceutical, food, biochemical, and biological interests. This new subclass of lipolytic enzymes possesses a distinct GDSL sequence motif different from the GxSxG motif found in many lipases. Unlike the common lipases, GDSL enzymes do not have the so called nucleophile elbow. Studies show that GDSL hydrolases have a flexible active site that appears to change conformation with the presence and binding of the different substrates, much like the induced fit mechanism proposed by Koshland. Some of the GDSL enzymes have thioesterase, protease, arylesterase, and lysophospholipase activity, yet they appear to be the same protein with similar molecular weight ( approximately 22-60 kDa for most esterases), although some have multiple glycosylation sites with higher apparent molecular weight. GDSL enzymes have five consensus sequence (I-V) and four invariant important catalytic residues Ser, Gly, Asn, and His in blocks I, II, III, and V, respectively. The oxyanion structure led to a new designation of these enzymes as SGNH-hydrolase superfamily or subfamily. Phylogenetic analysis revealed that block IIA which belonged to the SGNH-hydrolases was found only in clade I. Therefore, this family of hydrolases represents a new example of convergent evolution of lipolytic enzymes. These enzymes have little sequence homology to true lipases. Another important differentiating feature of GDSL subfamily of lipolytic enzymes is that the serine-containing motif is closer to the N-terminus unlike other lipases where the GxSxG motif is near the center. Since the first classification of these subclass or subfamily of lipases as GDSL(S) hydrolase, progress has been made in determining the consensus sequence, crystal structure, active site and oxyanion residues, secondary structure, mechanism of catalysis, and understanding the conformational changes. Nevertheless, much still needs to be done to gain better understanding of in vivo biological function, 3-D structure, how this group of enzymes evolved to utilize many different substrates, and the mechanism of reactions. Protein engineering is needed to improve the substrate specificity, enantioselectivity, specific activity, thermostability, and heterologous expression in other hosts (especially food grade microorganisms) leading to eventual large scale production and applications. We hope that this review will rekindle interest among researchers and the industry to study and find uses for these unique enzymes.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: SoftwareRole: Writing – original draft
                Role: Data curationRole: InvestigationRole: MethodologyRole: Software
                Role: Data curationRole: InvestigationRole: Methodology
                Role: ConceptualizationRole: Funding acquisitionRole: Project administrationRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                10 September 2020
                2020
                : 15
                : 9
                : e0238887
                Affiliations
                [1 ] Department of Plant Science and Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
                [2 ] Science & Technology Policy Division, Ministry of Agriculture, Food and Rural Affairs, Sejong, South Korea
                [3 ] Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
                Kyung Hee Univeristy, REPUBLIC OF KOREA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-4357-7008
                Article
                PONE-D-20-15655
                10.1371/journal.pone.0238887
                7482962
                32913358
                c9f7afb9-1650-4a0b-a6e2-402f5320817b
                © 2020 Yu et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 May 2020
                : 25 August 2020
                Page count
                Figures: 9, Tables: 2, Pages: 16
                Funding
                Funded by: the Next-Generation BioGreen 21 Program, Rural Development Administration, Korea
                Award ID: No. PJ013165
                Award Recipient :
                This study was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ013165) of the Rural Development Administration, Korea.
                Categories
                Research Article
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Leaves
                Biology and Life Sciences
                Genetics
                Phenotypes
                Biology and Life Sciences
                Genetics
                Single Nucleotide Polymorphisms
                Biology and life sciences
                Genetics
                Epigenetics
                RNA interference
                Biology and life sciences
                Genetics
                Gene expression
                RNA interference
                Biology and life sciences
                Genetics
                Genetic interference
                RNA interference
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA interference
                Biology and Life Sciences
                Organisms
                Eukaryota
                Plants
                Grasses
                Rice
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Plant and Algal Models
                Rice
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Inflorescences
                Panicles
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cell Walls
                Plant Cell Walls
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Plant Cells
                Plant Cell Walls
                Biology and Life Sciences
                Cell Biology
                Plant Cell Biology
                Plant Cells
                Plant Cell Walls
                Biology and Life Sciences
                Plant Science
                Plant Cell Biology
                Plant Cells
                Plant Cell Walls
                Research and Analysis Methods
                Database and Informatics Methods
                Bioinformatics
                Sequence Analysis
                Sequence Alignment
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article