14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest

      , , , , ,
      Fungal Ecology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Nitrogen Saturation in Northern Forest Ecosystems

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients

            Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Living in a fungal world: impact of fungi on soil bacterial niche development.

              The colonization of land by plants appears to have coincided with the appearance of mycorrhiza-like fungi. Over evolutionary time, fungi have maintained their prominent role in the formation of mycorrhizal associations. In addition, however, they have been able to occupy other terrestrial niches of which the decomposition of recalcitrant organic matter is perhaps the most remarkable. This implies that, in contrast to that of aquatic organic matter decomposition, bacteria have not been able to monopolize decomposition processes in terrestrial ecosystems. The emergence of fungi in terrestrial ecosystems must have had a strong impact on the evolution of terrestrial bacteria. On the one hand, potential decomposition niches, e.g. lignin degradation, have been lost for bacteria, whereas on the other hand the presence of fungi has itself created new bacterial niches. Confrontation between bacteria and fungi is ongoing, and from studying contemporary interactions, we can learn about the impact that fungi presently have, and have had in the past, on the ecology and evolution of terrestrial bacteria. In the first part of this review, the focus is on niche differentiation between soil bacteria and fungi involved in the decomposition of plant-derived organic matter. Bacteria and fungi are seen to compete for simple plant-derived substrates and have developed antagonistic strategies. For more recalcitrant organic substrates, e.g. cellulose and lignin, both competitive and mutualistic strategies appear to have evolved. In the second part of the review, bacterial niches with respect to the utilization of fungal-derived substrates are considered. Here, several lines of development can be recognized, ranging from mutualistic exudate-consuming bacteria that are associated with fungal surfaces to endosymbiotic and mycophagous bacteria. In some cases, there are indications of fungal specific selection in fungus-associated bacteria, and possible mechanisms for such selection are discussed.
                Bookmark

                Author and article information

                Journal
                Fungal Ecology
                Fungal Ecology
                Elsevier BV
                17545048
                October 2016
                October 2016
                : 23
                :
                : 48-57
                Article
                10.1016/j.funeco.2016.05.011
                c9f9188a-5430-475a-8eb6-84ad9fca4dc4
                © 2016
                History

                Comments

                Comment on this article